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Abstract
In this review we focus on the main cosmological implications of the Group Field
Theory approach, according to which an effective continuum macroscopic dynamics
can be extracted from the underlying formalism for quantum gravity. Within this pic-
ture what counts is the collective behaviour of a large number of quanta of geometry.
The resulting state is a condensate-like structure made of “pre-geometric” excitations
of the Group Field Theory field over a no-space vacuum. Starting from the kinematics
and dynamics, we offer an overview of the way in which Group Field Theory conden-
sate cosmology treats solutions for the homogeneous and isotropic universe. These
solutions including a bounce, share with other quantum cosmological approaches the
resolution of the singularity characterizing general relativity. Contrary to what is usu-
ally done in quantum cosmology, in Group Field Theory cosmology no preliminary
symmetry reduction is needed for this purpose. We conclude with a discussion of the
limits and future perspectives of the Group Field Theory approach.
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1 Introduction

The goal of the present paper is to review some essential properties of Group Field
Theory (GFT) and GFT condensate cosmology in an accessible way from a non-
specialist’s perspective, and with a non-GFT audience in mind. For a review with an
internalist perspective see [1]. Our purpose is to underline the physical consequences
of the formalism and to discuss some results that go beyond quantum cosmology and
invite conceptual innovation. Although the general formalism of GFT is deeply related
to Loop Quantum Gravity (LQG), tensor models and lattice quantum gravity, in the
sense that all these theories share the formulation in terms of discrete and combinatorial
structures rather than continuum variables (such as a metric or a connection on a
smooth manifold), the peculiarities introduced by the cosmological sector of GFT
brings a novel proposal on how to deal with these fundamental structures in order to
recover a continuum spacetime and ultimately general relativity [2].

Furthermore, GFT condensate cosmology is able to reach results similar to those of
Loop Quantum Cosmology (LQC) without any symmetry reduction, namely generic
solutions of its models of the early universe include a bounce. Symmetry reduced
versions ofLQG,well knownasLQC, have recently been studied asmodels of quantum
cosmology [3,4]. They possess twomain features. Thefirst is amechanism for avoiding
the big bang singularity in the framework of mini-superspace models of quantum
gravity1. In this mechanism the inverse scale factor is represented by an operator that
stays bounded as the universe’s classical radius shrinks to zero. Other alternatives
involve the effective discretization of the Hamiltonian constraint, which enables the
quantum wavefunction to ‘jump over’ the singularity. Whichever the model under
consideration, it is not clear how these models can be derived from full-fledge LQG,
if it is in fact possible. Hence, there is no common agreement whether the singularity
avoidance is a property of the full theory. In fact, calculations regarding the full LQG
theory show that the spectrum of the operator corresponding to the inverse volume is
not bounded from above [9]2.

1 It should be noted that ‘singularity avoidance mechanisms’ may exist in more conventional mini-
superspace of quantum geometrodynamics. For instance, from simple particle models like [5] to more
comprehensive studies in more realistic situations [6] and recent extension to anisotropic models [7], in
which the analysis is consistently based on the behaviour of the wavefunction and not on the bouncing
behaviour of quantum-corrected classical equations. For an overview and a comparison between LQC and
standard quantum cosmology, see [8].
2 For further analysis concerning these topics refer to [10].
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The second feature implies the possibility that an intrinsically quantum gravita-
tional mechanism of LQC might trigger inflation, which may eventually be stopped
(gracefully) by gravity itself. Although proposals have been made in the context of
isotropic models [11], in LQC there is no clear success in producing an inflationary
era out of pure quantum gravity effects. On the contrary, in GFT cosmology seems
to be possible by modeling an early epoch of accelerated expansion, which can last
for an arbitrarily large number of e-folds without the need of introducing an ad hoc
potential for the scalar field [12].

The same key-feature of LQC including a bounce can be found in GFT cosmology.
According toGFT, cosmology is understood as the ‘hydrodynamic’ regime of quantum
gravity. Themacroscopic universe would correspond to a fluid whose ‘atoms’ are GFT
quanta, behaving collectively in a mean field approximation. The collective variable
is a sort of density function, to which a velocity function is added [13]. Therefore,
this ‘hydrodynamic’ approximation provides a natural link with the usual Wheeler–
DeWitt approach to quantum cosmology, but with two main improvements: (1) the
theory does not require any symmetry reduction, but requires a suitable coarse-graining
from the microscopic features; and (2) includes many-body features of the full Hilbert
space of the microscopic theory to the extent in which they survive the coarse-graining
procedure and have an actual signature in the collective description. Nonetheless, there
is no much control over whether the approximation survives the inclusion of quantum
fluctuations of observables and inhomogeneous perturbations. In fact, [14] claims that
the hydrodynamic approximation itself can break down in the regime of observables
corresponding to the bounce where quantum fluctuations seem to become larger. In
this scenario, the fact that expectation values of the volume and the density show a
bouncing dynamics becomes less relevant, calling for a more refined approximation
of the underlying quantum gravity dynamics.

The ideaofmodeling theuniverse as aGFTcondensate is part of a larger effort aimed
at understanding the collective dynamics ofmany interactingdegrees of freedom. If one
could find a physical significance of the non-spatiotemporal quanta of the theory, then
one would wonder which are the possible macroscopic phases onwhich the quanta can
be organized. Therefore, it seems plausible that geometry and cosmology as we know
thememerge in (at least) oneof these phases. In otherwords, spacetimeand theuniverse
emerge through a phase transition from some non-geometric phase (or pre-geometric
phase) with no notion of locality. This is consistent with the aim of background-
independent formulation for quantum gravity theories. This phase transition has been
dubbed geometrogenesis. In the context of GFT, the condensate phase of the universe
would arise from this geometrogenesis [13,15,16]. This realization is supported by
results on GFT renormalization suggesting this type of phase transition (see Ref.
[17] for recent computations). The step from the background independent and non-
spatiotemporal microscopic quantum description to the effective cosmological one,
involves a coarse graining of an infinite dimensional set of quantum interacting degrees
of freedom. This situation is analogous to the effective hydrodynamic phase of some
condensed matter system, which is obtained directly from the quantum field theory
describing the atoms that constitute it.Within this condensate phase the universewould
ultimately enter in its hydrodynamical regime, where amore regular and ordered phase
is achieved. At this stage, the theory can be formulated in the language of spacetime,
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and geometry can be identified together with notions of locality, which are recovered
by using relational observables.

We will focus on the GFT formalism according to which the macroscopic, homo-
geneous and isotropic universe dynamically emerges from the collective behaviour of
a highly coherent configuration of many discrete “pre-geometric atoms” introduced
in Sect. 2. This approach suggests the existence of a phase where a large number of
quanta condensate, and ultimately within this condensate phase, the system enters in a
‘hydrodynamic regime’ where concepts of space and time are well defined (see Sect.
3). In this regime, the classical Friedmann dynamics for a homogeneous and isotropic
universe, together with quantum corrections of general relativity, emerge consistently
from the fundamental constituents. These aspects together with deviations from exact
homogeneity and the construction of more realistic cosmological scenarios are pre-
sented and discussed in Sects. 4 and 5 of our review. We then conclude by discussing
the results in recent GFT literature and their cosmological implications, underlying
open questions to be further investigated.

2 Quantum gravity withmatter reference frames

GFT is a research programme for a non-perturbative quantization of gravity. These
theories aim at describing the dynamics of quanta of space on background-independent
theories and hence are characterized by a lack of any preferred notion of time.
According to GFT, the universe is an ensemble of processes happening where any
notion of evolution is purely relational. Hence, as it happens in most quantum gravity
approaches, discussions focus on how to identify in mathematical terms the available
degrees of freedom at the Planck scale in order to define the relational dynamics.

One of the most drastic change of perspective of GFT is certainly how the the-
ory describes the macroscopic universe starting from the underlying physics and
without referring to any external structure. According to this approach, the structure
and dynamics of “quanta of space”, identified with discrete “pre-geometric” elemen-
tary structures (usually, quantized tetrahedra when restricted to 4 dimensions) each
of which with an associated classical phase space, provide the ‘appearance’ of the
spacetime fabric. Indeed, one might consider the classical theory as an emergent
phenomenon that agrees with general relativity, together with the diffeomorphism
invariance which is one of its most established foundations.

Aswewill discuss below, this view is similar to the theory of superfluiditywhere the
fundamental quantum atoms play no individual role at the hydrodynamic level, but the
collective behaviour is what matters. Analogously, in the GFT formalism the macro-
scopic universe emerges dynamically as the collective behaviour of a highly coherent
configuration of many discrete “pre-geometric atoms”. Thus, the theory enters into
a “hydrodynamical” phase where a large number of constituents form a condensate
structure. It is from the latter that concepts of space and time are defined. This approach
would suggest that, in this regime, the classical Friedmann dynamics, together with
quantum corrections emerge consistently from the fundamental constituents.

Let us first focus on gravity only with nomater fields present at all and later, we will
show how this approach can embody matter degrees of freedom. In the formulation of
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GFT, the elementary degrees of freedom of geometry are represented by excitations
of a quantum (statistical) complex scalar field ϕ(g1, g2, ..., gd), function of d group
elements of an abstract group manifold (or the corresponding Lie algebra); this is

ϕ(gI ) : Gd −→ C (1)

for I = 1, ..., d. As mentioned, this manifold does not carry a priori any notions of
spacetime geometry by itself, but stores geometric information—metric or connec-
tion data– beyond its mere combinatorial or topological structure [18–20]. Then, the
elementary excitations occur above a fully degenerate ‘no-space’ vacuum and can be
seen as quanta of geometry labelled by data in the domain space of the bosonic GFT
field ϕ. Each quantum can be represented graphically as a (d − 1)−simplex with field
arguments associated to the faces of it, or as a d−valent graph vertex, with field argu-
ments associated to the links. The dynamics is governed by the choice of the action
S(ϕ) that will be defined in Eq. (6). By appropriate choices of the dimension d, the
group manifold G and the functional form of the action together with the combina-
torial pairing of field arguments, these theories can be understood as quantum field
theories of spacetime [21].

Concretely, in the cosmological context, most 4 dimensional gravity models use
the spacetime dimension d = 4 and the group G = SU (2). Indeed, when the GFT
field

ϕ(gI ) : SU(2)4 −→ C (2)

satisfies the “closure” condition ϕ(gI ) = ϕ(hgI ) for each h ∈ G = SU(2), the
microscopic theory can be depicted as 3−simplices, i.e. tetrahedra, whose 4 faces
are associated to the field arguments given by an equivalent class of geometrical data
[{gI }] = {{hgI }, h ∈ G}. By these appropriate choices, the perturbative expansion of
the theory produces amplitudes that can be seen as a simplicial gravity path-integral
[22], with the group-theoretic data entering as holonomies of a discrete gravitational
connection.

Analogous algebraic data is used to construct the spin network states in LQG
(holonomies of a connection and fluxes of a triad field) [23–27], and in fact these
states can be seen as graphs dual to the triangulations formed by GFT quanta. In this
duality, each vertex of the graph is dual to the tetrahedron of the triangulation; the links
joining vertex are coloured by SU(2) connections and play the role of the tetrahedron
faces where the gluing determines the particular GFTmodel. Therefore, GFT quantum
states are built up from the kinematical data of LQG and the theory can be understood
as a field-theoretic 2nd quantization formulation of LQG [28]. This correspondence
between discrete quantum field theory (QFT) structures and spin networks can be
found also at the dynamical level but treated via standard QFT methods. In this way,
GFT attempts to define a sum over discretised geometries which can be used, once a
continuum limit is identified, to obtain a path integral formulation for quantum gravity.

However, to extract this effective continuum physics and realistic cosmological
models requires more crucial ingredients. Of course, there is plenty of matter in the
universe and the relation of thematter content and its corresponding interactionmust be
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addressed in a theory of Quantum Gravity. In GFT and other related diffeomorphism-
invariant formalisms, matter fields are the most convenient way to define physical
reference frames. This is a relational approach usually employed to define physical
observables in different quantum gravity theories (see [29–31]).

A standard choice in quantum cosmology is to use free massless scalar fields for
defining the evolution of the theory. This choice ensures diffeomorphism invariance.
It is our interest here to see how these scalar fields can be coupled to a QFT formalism
and their implications for the GFT condensate and the cosmological sector. The matter
reference frame should be reconstructed from the physical degrees of freedom of the
underlying theory. Therefore, theGFTfieldϕ in (2) encompasses the new “coordinate”
(scalar) degrees of freedom with real labels,

ϕ(gI , φ
J ) : SU(2)4 × R

4 −→ C . (3)

As before, the group elements gI ∈ SU(2) can be associated to the parallel transport of
a gravitational Ashtekar–Barbero connection across the four faces of the tetrahedron,
or equivalently along the links attached to each node of the 4−valent spin network and
dual to such faces. Each “chunk of space” is labelled with a φ J , with J = 0, 1, 2, 3,
specifying the discrete matter (scalar field) degrees of freedom3. These fields are
attached to the vertices corresponding to each tetrahedron and would represent the
readings of all fields: ‘clocks’ and ‘rods’.

The 2nd. quantization formalism is suitable for describing quantummany-body sys-
tems. The Fock space is built from the Fock vacuum |0〉 representing the state with no
spin network nodes or no tetrahedra. Therefore, it is a statewith no topological nor geo-
metrical information; a “no-space” vacuum analogous to the Ashtekar–Lewandowski
vacuum [32] where operators for geometric observables such as volumes and areas
from LQG vanish. Thereupon, one-particle states can be generated with the creation
operators ϕ̂†(gI , φ J ) acting on the vacuum state. Both ladder operators, ϕ̂† together
with the annihilation operator ϕ̂, are required to be translation invariant under diagonal
group multiplication from the left

ϕ(g1, . . . , g4, φ
0, . . . , φ3) = ϕ(hg1, . . . , hg4, φ

0, . . . , φ3) ∀h ∈ SU(2) . (4)

It can be verified that if the theory is written as a field theory on the Lie algebra
su(2)4 � (R3)4 via a noncommutative Fourier transform, the counterpart of the left
gauge invariance is the closure constraint for the four faces of the tetrahedron [33].
The role of the ladder operators is derived directly from the postulated canonical
commutation relations for the chosen bosonic statistics, which include the correct left
invariance. These are

[
ϕ̂(gI , φ

J ), ϕ̂†(g′
I , φ

′J )
]

= δ4(φ J − φ′J )
∫

SU(2)
dh

4∏
I=1

δ(g′
I h gI

−1) , (5)

3 This procedure is usually generalized to an arbitrary k−number of massless scalar fields, J = 0, 1, ..., k.
Here we restrict the analysis to only four of them because they will be used for labelling the four spatiotem-
poral dimensions; i.e. 1 temporal φ0 and 3 spatial φi independent components.
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while two ϕ̂ or two ϕ̂† operators commute. This leads us to interpret ϕ̂† as a creator
of a single four-valent spin network node/tetrahedron with data given by gI up to a
gauge transformation on the left. In this picture, the one-particle state is depicted as

ϕ̂†(gI , φJ) |0〉 =
∣
∣
∣gI , φ

J
〉

=

Finally, one can create generic multiparticle states with arbitrary particle number
N acting N times with the creation operator ϕ̂† on |0〉.

Generic N−particle states can be associated to graphs structures and therefore,
GFT models can be understood as a QFT for spin networks. Even though these states
are analogous to those postulated in LQG in the sense that the degrees of freedom
are encoded in purely combinatorial and algebraic structure as functions on these
group manifolds, the corresponding Hilbert spaces are very different from each other.
The GFT Hilbert space has a Fock structure defined out of the union of graph-based
Hilbert spaces decomposed into elementary building blocks. An important feature of
these Fock states is that, contrary to LQG states which contain all possible graphs
with precise equivalence relations among them, they are defined with no unambigu-
ous identification with the graph used to be constructed. They are superpositions of
states for different particle numbers, and hence rather different from the states usually
considered in LQG which are typically built on fixed graphs. Furthermore, although
both theories define states with different numbers of nodes as orthogonal, the same
does not happen when the number of nodes coincides. Contrary to LQG states, the
structure of GFT states is reduced to specific correlations among fundamental quanta.
In this manner, quantum states with the same number of quanta but with different cor-
relations can overlap. Therefore, one could say that the structure of the GFT graphs
has less relevance than in standard LQG. The precise connection between the (kine-
matical) LQG states and GFT states is a delicate issue and we refer to [34] for a more
complete discussion. However, two more comments are worth mentioning here. First,
in 2nd. quantization formalism, the very number of particles corresponding to Fock
states is uncertain, and becomes an observable with probabilities and mean values as
any other observable. Therefore, as it will be discussed in the following in Eq. (14),
N is a quantum observable of the theory and the dependence on it is derived and not
assumed, and enters necessarily in both the kinematics and the effective cosmological
dynamics [35]. Moreover, although graph structures lose importance in GFT, their
physical relevance is enhanced because the number of graph nodes is turned into a
new (very simple) physical observable. If one takes seriously the features of GFT
states with their fundamental discreteness and drops some of the features correspond-
ing to the LQG Hilbert space, as stated in [34], “the GFT Hilbert space has a clear
Fock structure, giving straightforward meaning to the notion of ‘QG atom of quantum
space’, and making powerful analytical tools available”.
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Second, if cosmology and geometry emerge from an effective hydrodynamic
approximation to quantum gravity, it is plausible that topological information can
not be found in the representation of Fock states in terms of graphs, but it must be
extracted from elsewhere. Stated in other words, the topological information that one
may associate to a collection of N tetrahedra plays no role in the continuum interpre-
tation (and there would probably be no consistent way of using this information if we
are dealing with superposition of states with different N ), hence the topology of space
should also be emergent rather than determined by microscopic details, such as spe-
cific choices of graphs. In fact, the continuum limit which, as briefly mentioned in the
Introduction can be understood as a thermodynamic limit, is achieved through a phase
transition reached in the N → ∞ limit4. Particularly noteworthy is that the resulting
states after this phase transition are no longer in the original GFT Fock space. This is
a standard feature in QFT: when phase transitions occur, a change of representation
to a different, unitarily inequivalent Hilbert space is needed. Among the more general
considerations that can be developed there is the following. If there is a theory with
physical discreteness, one can argue that no continuum limit is realized, but only a
“continuum approximation” in analogy with the one appearing in causal sets [37]. The
GFT condensate that may describe the universe would then have an extremely large
but still finite number of quantum gravity atoms which are approximated as infinite.

The GFT framework treats polyhedra quite literally as the quanta of spacetime.
Quantum states in the kinematical GFT Hilbert space can be viewed as a collection of
polyhedra (tetrahedra when d = 4), which can be (or not) glued to each other across
faces. The theory is defined as a quantum field theory for the quanta where their gluing
constraints together with their evolution processes can be interpreted as a definition of
their interactions and their dynamics. Different choices for the interaction terms V are
model-building choices and can be understood as differentmanners of defining generic
non-local many-body interactions between the underlying quanta. Any such model
building strategy should be based on a clear understanding of how simplicial geometry
is encoded in the algebraic data that we used. Working with simplicial complex means
to choose the dimension d to the would-be spacetime dimension and interprets the
GFT fields (this is, the quanta they create/annihilate) as (d − 1)−simplices which its
(d−2)−faces carry the arguments of theGFTfields,which formost practical purposes,
one actually chooses the be the rotation subgroup (2). Although the theory admits a
generic formulation in terms of simplicial polytopes whose boundaries are made of
simplices, most of the relevant literature in models of quantum gravity and particularly
the cosmological models relies on the well-understood simplicial case [1,13,38,39].
In the simplicial context, the simplicial gluing determines the face sharing interaction
terms of five 3−simplices (tethrahedra) to form a 4−simplex, which are the only ones
entering in the action; crucial for this interpretation is their non-locality in the group
variables (in the sense that only a subset of the arguments of a given GFT field is
related with a subset of the arguments of a different one). As mentioned, this kind
of simplicial interactions is typically assumed in quantum geometric GFT models,
but the same gluing process can be encoded in terms of dual graphs, understood as

4 The fact that N → ∞ corresponds to a continuum limit in which a phase transition is reached has been
shown in detail in matrix models for two-dimensional gravity [36].
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the 1−skeleton of the cellular complex, dual to the simplicial complex of interest.
Obviously, the Hilbert space taken by GFT also contains states associated to open
spin network vertices not glued to any other, i.e. with some links (possibly all if
interactions are neglected) ending up in 1−valent vertices. A simple general GFT
action can be defined adding a quadratic kinetic term, that includes a local kinetic
operatorK containing derivatives with respect to both variables gI and φ J , to a generic
interaction term V , which as mentioned is higher order in the field operators

S[ϕ, ϕ̄] = −
∫

SU(2)4×R4
d4g d4φ ϕ̄(gI , φ

J )K ϕ(gI , φ
J ) + V[ϕ, ϕ̄] . (6)

Once the action is specified, the full dynamics is determined. In fact, the action
is typically chosen specifically such that the perturbative expansion of the partition
function of the field theory

Z =
∫

DϕDϕ̄ e−S[ϕ,ϕ̄] (7)

generates the Feynman rules for any spin foam model; such perturbative expansion in
Feynman diagrams equals the sum over discretized path integrals for quantum gravity
[40]; in this sense is thatGFT represents a 2nd quantized reformulation of theLQGstate
space and a completion of the spin foam formalism. The kernelsK andV determine the
details of the resulting Feynman amplitudes and in doing so, it is possible to generate
models that are related in a precise way to spin foammodels [41]. Indeed, in [42] it was
realized that amplitudes for the Barrett–Crane spin foam model in four dimensional
quantum gravity [43] could be obtained from a suitable choice of the GFT action.
Later, it was shown that any prescription for a spin foam amplitude (within a class of
models of interest for quantum gravity) could be obtained directly from GFT [21]. In
fact, the generality on possible choices of both operators, K and V , points towards a
one-to-one correspondence between spin foam models and GFT actions [42], where
the GFT partition function Z corresponds to a sum over topologies and spacetime
histories (for gravity and matter). Each history itself is discrete and contains a finite
number of degrees of freedom. The main technical challenges are still the same as
for the lower-dimensional matrix models; these are to control the unwieldy sum over
Feynman graphs and obtain a continuum limit. However, we are interested here in
cosmological implications of GFT, hence we will not go deeper in the microscopic
description of the theory and proceed to the effective picture.

Once a structure for the action is chosen, the path integral for the theory can be for-
mally defined. Subsequently, the complete (although formal) quantum dynamics can
be fully specified by deriving the Schwinger–Dyson equations for n−point correlation
functions from the path integral formalism. In quantum field theory, the Schwinger–
Dyson equations are one way to organize and sum in a natural way the infinitely many
diagrams that contribute to n−point functions [44]. In this sense, they automatically
contain non-perturbative information and encode the complete quantum dynamics of
the GFT models [45,46]. The equivalence to other non-perturbative methods such as
the Bogoliubov canonical transformation and the Gaussian variational Ansatz, is well
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established. In the continuum limit of GFT models it is expected that the Schwinger–
Dyson equations would admit an interpretation as Hamiltonian and diffeomorphism
constraints of the quantum gravity theory, and thus provide the definition of the phys-
ical inner product (at least in a regime where topology changes are suppressed) for a
non-perturbative domain.

The same quantum dynamics can also be given in an operator form for a GFTmodel
with an action S[ϕ, ϕ̄] given by (6). The quantum equations of motion for a generic
state |�〉 can be simply written as

δ Ŝ[ϕ, ϕ̄]
δϕ̄(gI )

|�〉 = 0 , (8)

together with a second equation, obtained from the variation of the action with respect
to ϕ(gI , φ J ). As mentioned above, the kinetic K and interaction V kernels in the
generic action (6) can be chosen so as to reproduce the edge and vertex amplitudes of
a spin foam model; i.e. a perturbative expansion of the GFT partition function around
the Fock vacuum can be made to coincide with the expansion of the spin foam model.
Nonetheless, when dealing with interacting field theories, solutions to the equation
cannot be easily obtained; in fact, a general solution is not known without further
approximations5.

The GFT approach deals with problems that are analogous in condensed matter
physics and hence it made use of its ideas and methods. It proceeds by seeking for
some condensate state that can play the role of a new, nonperturbative vacuum of
the theory and that approximates the full solution state |�〉, at least for a restricted
set of cosmological observables without making use of an effective Wheeler–DeWitt
equation [35]. In the next section it will be shown that when restricting to states
represented by awavefunction obeying the homogeneity principle, consistent effective
quantum homogeneous cosmologies are obtained [47–49].

3 GFT condensed phase

The program of GFT condensate cosmology has been proposed in [38,47,49] (see
Refs. [1,13,50] for reviews on the topic and their application to homogeneous cos-
mology). Instead of employing any symmetry reduction, the guiding principle for its
construction steam on the analogy with condensed matter theory and the physics of
many-body quantum systems. In this picture cosmology is represented as the hydro-
dynamic approximation of the quantum gravity theory. The main purpose tackles the
identification of quantum states in a full quantum field theory for ϕ (function of four
arguments valued in the SU(2) and minimally coupled to at least four scalar matter
fields degrees of freedom6) and its possible consistent interpretation as a continuum
geometry representing a macroscopic and nearly homogeneous description which can

5 The kinematical Fock space is known to be troublesome for defining an interacting quantum field theory.
According to Haag’s theorem one should not expect solutions to the quantum dynamics to be defined as
elements on the Fock space.
6 For a choice that can be generalized [47,49].
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be associated to cosmological spaces. This restricted class of states are ruled by an
effective dynamics which can be understood as the cosmological evolution and must
be extracted out of the fundamental quantum dynamics.

The Fock space construction previously presented proves technically very useful
in order to address the problem of how to extract continuum physics from GFT. In
the full theory, fundamental quanta are associated to the 3−simplices (alternatively
spin network-type degrees of freedom) presented in the previous section that can be
seen as building blocks of three-dimensional simplicial geometries representing the
(boundary) states of the theory, with their quantum simplicial geometric properties
encoded in the group-theoretic data; equivalently, the dual picture permits to associate
the perturbative expansion of the n−point functions which produces a sum over Feyn-
man diagrams, which are not graphs but 4−dimensional cellular complexes, weighted
by a discrete gravity path integral with the same group-theoretic data as dynamical
variables. The states of interest are required to have a very large (infinite on the approx-
imation of interest) number of excitations over the Fock vacuum of this field. These
microscopic degrees of freedom need to be coarse grained to obtain an elementary
piece of continuum space that could serve as the starting point for GFT hydrody-
namics. In this spirit, the hydrodynamic approximation implies the negation of the
microscopic dynamics (which can only be consistently determined by solving all the
Schwinger-Dyson equations of the theory) in pursuit of global ones, which encodes the
information corresponding to the phase space of homogeneous geometries in terms of
a suitable probability distribution. The hypothesis of condensation hence determines
the form of GFT hydrodynamics. The rigorous coarse graining procedure in the full
theory implies to capture the collective behaviour by a single statistical distribution
over the space of ‘single-particle’ data [51,52]. In this manner, the theory reflects the
distinction between the continuum and the semi-classical approximation, which we
have emphasized in the Introduction.

The GFT framework suggests that continuum physics is nothing more than one of
the (possibly many) macroscopic phases in which the same quanta of the theory may
be organized; one phase in which space and time notions emerge from the collective
behaviour of discrete ‘geometries’ through a phase transition. Various indications for
such transitions have been found, but a complete understanding of such phenomenon
remains open. Simplemodels can be found in the context of functional renormalization
group analysis in Refs. [53,54], or using Landau–Ginzburg theory in [55].

3.1 Themean field approximation

The construction of collective states steam on the condensate hypothesis, which
suggests that each fundamental 3−simplex (or spin network vertex) has the same
information, at least in its first approximation. One is able to construct many different
condensate states under this hypothesis, each of them characterized on how their con-
stituents are glued to each other. The simplest application of this criteria steam in the
analogies with the Gross–Pitaevskii ansatz for Bose–Einstein condensates [56]; apart
from choosing states satisfying the wavefunction homogeneity, one also neglects the
connectivity information between their constituents. This connectivity can be under-
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stood in terms of entanglement and correlations between the quanta of the condensate,
which in this simplest approximation vanishes. These states are coherent states of the
GFT field operator corresponding to an infinite superposition of states describing dis-
connected tetrahedra and characterized by a macroscopic occupation number. This
‘single-particle’ condensate state is written as

|σ 〉 ≡ N (σ ) exp
(
σ̂

)|0〉 ; (9)

where the normalization factor is given by

N (σ ) ≡ exp
[
− 1

2

∫
dφ J

∣∣σ(φ J )
∣∣2 ]

(10)

and the condensate operator is defined as

σ̂ ≡
∫

d4g d4φ σ(gI , φ
J ) ϕ̂†(gI , φ

J ) . (11)

σ(gI , φ J ) describes a single collective functionwhich is analogous to the order param-
eter in the context of the Gross–Pitaevskii model. This state has an important property:
it is field coherent since it is an eigenstate of the field annihilation operator ϕ̂, i.e.

ϕ̂(gI , φ
J )|σ 〉 = σ(gI , φ

J )|σ 〉 , (12)

which is at the heart of its use as a robust and classical-like quantum state. As a general
definition of such state, it acquires a nonvanishing expectation value:

σ(gI , φ
J ) := 〈σ |ϕ̂(gI , φ

J )|σ 〉 �= 0 (13)

which is clearly different from the Fock vacuum in which 〈0|ϕ̂(gI , φ J )|0〉 = 0. This
approximation is a drastic one, but as it is useful for modeling weakly interacting
Bose–Einstein condensates, it will be quite reasonable for constructing a spatially
flat FLRW spacetime. In fact, the state (9) satisfies the homogeneity property, which
requires for the state to be determined by a single-particle wavefunction. Under this
simple approximation, correlations between GFT quanta are ignored, and in the mean
field-approximation where no fluctuations are present, σ(gI , φ J ) represents a homo-
geneous condensate wave-function that can be directly understood as a classical GFT
configuration. These geometric states together with the attached fields φ J can macro-
scopically distinguish between different points over the condensate. Therefore, on the
emerged spacetime one is able to define a complete relational dynamics. In this sense,
the quantized space does not reside “somewhere”, but it itself defines the locus; yet
the hydrodynamic limit of GFT defines this locus as an effective theory that is not
useful for describing the dynamics of the quanta, but only the collective behaviour
of a big number of them. Clearly, fluctuations over this condensed phase which have
been ignored can (and should) be re-established as a natural feature due to quantum
uncertainty.
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In the second-quantized framework, the simplest one-body observable that can be
constructed is the number operator

N̂ (φ J ) =
∫

d4g ϕ̂†(gI , φ
J ) ϕ̂(gI , φ

J ) . (14)

The wavefunction is not normalized; rather its norm determines the number of uncor-
related quanta in the given state

N (φ J ) = 〈σ |N̂ (φ J )|σ 〉 =
∫

d4g
∣∣σ(gI , φ

J )
∣∣2 (< ∞) (15)

which is the (finite) expectation value of the operator (14) at a value φ J for each of
the four fields. The homogeneity condition for the wavefunction can be defined over
more general condensates containing additional topological structure and defined by
a sum over connected graphs of arbitrary complexity [48].

In the remaining part of this section, the two main testable structural consequences
of the cosmological principle, namely homogeneity and isotropy, will be discussed,
with emphasis on how they are both implemented in GFT. Indeed, the GFT condensate
approach involves cosmological models which reproduce the Friedmann–Lemaître–
Robertson–Walker (FLRW) spacetime, but in a semiclassical limit where the field
operators are replaced by classical fields. This approximation seems to be suitable
enough for describing the emergence of a macroscopic and nearly homogeneous
universe, where small spatial gradients on the effective geometry can take place.
In complete analogy with condense matter theory, if interactions get stronger, the
mean-field approximation breaks down. This behaviour is probably expected in the
early universe or near the centres of black holes where quantum effects are relevant
because of high curvatures; a nice discussion on the ranges of validity of themean-field
approximation can be found in [38].

The Hartree–Fockmean field approximation (9) is themost simple collective wave-
function constructed under the homogeneity principle. Its dynamics can be looked for
in the expectation value of the (normal ordered) operator equations of motion obtained
from (8). However, one can appeal to the Schwinger–Dyson equations to be solved
approximately

〈σ | δ̂S
δϕ̄

|σ 〉 = δS[σ, σ̄ ]
δσ̄ (gI , φ J )

= −K σ(gI , φ
J ) + δV[σ, σ̄ ]

δσ̄ (gI , φ J )
= 0 . (16)

This expression provides a quantum cosmology-like equation for the ‘wavefunction’
σ (similar to those obtained in Ref. [57]). The underpinning of the approximation into
coherent states is only valid in regimes where the interaction term, which contributes
with a non-linear term of the order of σ̄ 4, is subdominant. However, at some point
interactions should become dominant since the particle number scales as |σ(gI , φ J )|2
and the potential V contains higher powers of σ and σ̄ . These aspects will become
relevant for our discussion in Sect. 5. In this context, the microscopic dynamics of
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the GFT quanta can be hydrodynamically described in terms of the collective variable
σ(gI , φ J ), which is the condensate wavefunction.

This hydrodynamic limit is understood as an effective collapse of the Schwinger–
Dyson tower of equations into the simplest one. The simplicity of the state |σ 〉 makes
this equation to coincide with the condensate wavefunction, which is the one-particle
correlation function. The continuum nature of the picture arises from the fact that,
given the equivalence with the path integral formulation, the coherent state is given by
an infinite sum over numbers of disconnected spin networks nodes (implicitly a sum
over “not yet connected” graphs). Therefore |σ 〉 is a non-perturbative statewith respect
to the Fock vacuum, but now playing the role of a new non-perturbative vacuum of an
effective theory obtained after the hydrodynamical limit.

Analogously to the Gross–Pitaevskii equation, the dynamics of the condensate
described by (16) is nonlinear, as is expected in the hydrodynamic context, while all
dynamical equations on the Hilbert space and on the GFT Fock space remain lin-
ear. This equation is of course a weaker condition than (8); in terms of the truncated
Schwinger–Dyson equation, the theoretical error in the resulting effective theory can
be estimated by the magnitude of the neglected terms. These terms can be recon-
structed in terms of the non-Fock representations for describing interacting fields.
With this inequivalent representation of the canonical commutation relations (with
respect to the free theory) the interacting theory naturally provides fluctuations over
the homogeneous background associated with inhomogeneities of the condensate.

To get an initial insight on the effective dynamics of GFT condensates, two approxi-
mations are usually imposed. Thefirst one involves all symmetries of the employed free
massless scalar fields φ J used as matter to introduce relational cosmological observ-
ables [38]. As mentioned, these matter reference frames allow us to define an effective
dynamics formulated exclusively in relational terms, where spacetime points in the
emergent spacetime description can be distinguished7. Concerning the symmetries of
the material clocks and rods, the GFT dynamics should be invariant under

1. constant (arbitrary) shifts φ J �→ φ J + φ J
0 ,

2. the time-reversal or parity transformation φ J → −φ J ,
3. rotations φi → Oi

j φ
j , with Oi

j ∈ O(3) and i, j = 1, 2, 3 .

the first symmetry forbids any explicit dependence on φ J .
As stated before, GFT condensate cosmology has been applied to a general class

of GFT models without specifying the forms of K and V . However, when regarding
cosmological applications, these class of models are usually employed in an effective
field theory (or hydrodynamic) approximation; see for instance Refs. [38,39,58–60].
Assuming that the GFT action is invariant under the three symmetries 1 − 3 of the
free and massless scalar fields given above, the expansion for K in derivatives with
respect to φ J is forced to be

K = K0 + K̃1 ∂2

∂(φ0)2
+ K1

3∑
i=1

∂2

∂(φi )2
+ . . . (17)

7 See Sect. 4.2 for clocks and Sect. 5 for rods.
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The dots stand for higher derivatives which are suppressed. Let us note that the coef-
ficients Ki are still differential operators with respect to the SU(2) variables gI , but
with no explicit dependence on φ J . In this way, a truncation up to second order deriva-
tives provides a low-energy GFT dynamics that would agree with cosmology on large
scales, and the truncation up to second order derivatives (17) is a good approximation
to the full kinetic term. Under this approximation, one assumes that the fluid density
ϕ(φ J ) varies slowly with respect to its arguments, particularly with respect to the
relational time. This is what allows the suppression of higher order derivatives with
respect to the scalar field variable in the Taylor expansion. Nonetheless, at it will be
shown in Sect. 4, this condition may not be satisfied by the condensate wavefunction
representing the cosmological spacetime. As explicitly shown in [38], for satisfying
the Friedmann equation at late clock times φ0, it is required an exponential behaviour
for the volume operator, and thus for the wavefunction as well. Progress in this issue
have been recently discussed in [61].

The second approximation usually made for extracting physical states of the theory
is to consider for the building blocks of geometry to be all in the same microscopic
configuration and all in a weakly interacting regime in which the effect of V on
the dynamics can be neglected. This implies for the GFT quanta to be uncorrelated;
necessary condition for defining the coherent state |σ 〉 in a mean-field treatment given
by Eq. (9). This drastic approximation is not strictly necessary. In fact, it is not suitable
for strong coupling regimes and it breaks down with the grown of the particle number
intervening in the picture. The free approximation is valid only in amesoscopic regime
where the particle number for a given volume of the state is not so large. Some studies
include the potential V of the effective dynamics for some particular models of GFT
condensates [62,63]. In some cases, interaction terms become important at late times,
after a prolonged phase of acceleration, and they can even lead to a recollapse of the
universe, while preserving the bounce that replaced the initial singularity [12].

Under both approximations, replacing the general expansion for the kinetic kernel
(17) in the r.h.s. of Eq. (16), one gets the following equation of motion

(
K0 + K̃1 ∂2

∂(φ0)2
+ K1

3∑
i=1

∂2

∂(φi )2
+ · · ·

)
σ(gI , φ

J ) = 0 . (18)

where the dependence on quantum geometric data is encoded in the terms K0 and K1

which are functions of the group elements (and/or their derivatives). At a quantum
level, one approaches this equation using Peter–Weyl theorem [64] to decompose the
wavefunction into SU(2) representations. The left “gauge symmetry” in (4) implies for
the GFT condensate to obey the identity σ(gI , φ J ) = σ(hgI , φ J ) for all h ∈ SU(2). It
is desirable to give a precise geometric interpretation to the condensate as a continuous
and homogeneous spatial geometry. In this picture, the condensate wavefunction is
interpreted as a probability distribution on the space of such homogeneous geometries.
However this interpretation requires a right invariance under the diagonal group action
for the condensate; i.e. σ(gI , φ J ) = σ(gI k, φ J ) for all k ∈ SU(2). This yields for
the state to only contain the gauge-invariant degrees of freedom of a tetrahedron.
Consequently σ becomes a function on SU(2)\SU(2)4/SU(2), which is isomorphic to
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the space of connection degrees of freedom of a homogeneous universe in LQC [65].
However, this symmetry is not one of the GFT field, as it is the left invariance8, but
an imposed property on certain states aiming at reducing the number of dynamical
degrees of freedom.

In the mean-field approximation, self-consistency implies the existence of a regime
where the field equation (18) is approximately solved only considering the first kinetic
term. The uncorrelated state solving this equation has interesting cosmological appli-
cations to be reviewed in what follows. Being a many-particle state with an analogous
hydrodynamical treatment, it can contain information about the connection and the
metric at many different points in space. To distinguish them, the introduced massless
scalar fields represent relational clocks φ0 and relational rods φi defined over the con-
densate. Apart from the symmetries 1–3, no assumptions have been made over these
fields.

3.2 Isotropic condensed states

At this point we have obtained a condensate-like structure characterized by a nearly
spatial homogeneity; however, one more feature is needed for making contact with
usual cosmology; namely, isotropy. In what follows, a further restriction on the struc-
ture of the wavefunction of the condensate will be imposed. As it will be shown in
the following and in Sect. 4, the restriction to isotropic modes for the microscopic
states leads to further simplifications that allow us to reconstruct isotropic quantities
like the spatial volume, the cosmological scale factor and thus the Hubble rate from
σ(gI , φ J ). In the GFT context, it is argued that the natural way to require isotropy is to
impose themost ‘isotropic’ condensate configuration. In classical geometry onewould
think of equilateral tetrahedra whose four faces are equal and the resulting volume is
maximized. This ideas have been translated to the quantum picture in [38,58].

Regarding the analogy with equilateral tetrahedra, one can postulate that each of
the four links/faces gI are coloured with spin− j irreducible representation of SU(2).
The correspondence between the equal areas of the faces of the tetrahedron and the
restriction to an expansion over isotropic modes only is understood as expanding over
the same four jI , i.e. j1 = j2 = j3 = j4, one for each (of the same) coloured link
associated to each node of the spin network. In this approximation, the spin network
vertices are said to be monochromatic and, together with the homogeneous restriction,
all of them are exactly equal. Secondly, with respect to the volume maximization of
the classical tetrahedron, the SU(2)−invariant subspace reduces the wavefunction to a
simple form if written in terms of linear combinations of a pair of suitable intertwiners:
Ī j,ıl
mn and I j,ır

mn , one associated to the left gauge invariance and one to the right closure
condition. These intertwiners define invariant mappings between SU(2) representa-
tions and they are elements of the Hilbert space of states of a single tetrahedron. The
intertwiners should be chosen so that they are eigenstate of the LQG volume operator
with an associated eigenvalue being the largest possible for the given j .

8 This choice is a convention and can be exchanged; on the other way around, one can start with a right
“gauge symmetry” on the ϕ field and then impose the left invariance over σ obtaining equivalent results.
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By decomposing the wavefunction σ(gI , φ J ), solution of the equation of motion
(18), into a basis of orthonormal functions given by the Wigner D j

mn(gI )−matrices,
we group all dependence on gI in fixed functions D j (gI ), which are an appropriate
convolution of four Wigner D−matrices with intertwiners9, such that quantum geo-
metric properties of the field are stored in the scalar wavefunctions σ jI , ıl ır ≡ σ j (φ

J )

that now only depend on the volume of the tetrahedron (or equivalently, on the surface
area of one of its faces), as well as on the scalar field φ J . Therefore, the restricted
mean field expanded in irreducible SU(2) representations is written as

σ(gI , φ
J ) =

∑

j∈N0
2

σ j (φ
J )D j (gI ) (19)

where the coarse-grained degrees of freedom are now captured by each of the wave-
functions σ j (φ

J ). Refs. [66,67] discuss whether the restriction to expansions in only a
single spin j labelling the irreducible representations of SU(2) can be relaxed, together
with their consequent effective dynamics in the large-scale limit. Recall that lifting the
isotropic restriction allows to investigate anisotropic GFT condensate configurations.
According to [67], anisotropies play an important role only at small values of the
relational clock φ0 (i.e. at small volumes), whereas at late times the isotropic mode
become dominant.

For the usual GFT actions, the kinetic operator K only contains derivatives, but no
explicit dependence on gI . In the common situation where all terms in the expansion
of K in Eq. (18) are general functions of the Laplace–Beltrami operators with respect
to the SU(2) variables gI , we can define the following coefficients

K0D j (gI ) := −BjD j (gI ) , K̃1D j (gI ) := A jD j (gI ),

K1D j (gI ) := C jD j (gi ) ; (20)

A j , Bj and C j are j−dependent couplings depending on the original GFT kinetic
terms and with no further derivatives. Each Laplacian acting on each gI contributes
with an eigenvalue − j( j + 1). Recall that D j (gI ) encode the monochromatic (equi-
lateral) character of the spin network nodes (tetrahedra). The Wigner matrices are
eigenfunctions of the SU(2) Laplacian, then the Peter–Weyl decomposition leads to a
decoupling of (18) into independent equations for each j , written as

(
−Bj + A j ∂

2
φ0 + C j

3∑
i=1

∂2
φi

)
σ j (φ

J ) = 0. (21)

In homogeneous configurations, the handling of “rods” φi loses meaning. Therefore,
when deriving the global aspects of a FLRWcosmology only the first two termsmatter.

9 In the convolution of Wigner D−matrices with SU(2) intertwiners, the usual range of values for the
magnetic indices is taken: − j ≤ m, n ≤ j . The indices ı labels the possible intertwiners elements in a
basis of the Hilbert space; ıl and ır points to the imposition of the left and right invariance to the field. To
a detailed construction of the wavefunction see for instance [38]; here we just sum up the main steps for
deriving a cosmological sector from the full theory.
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In the next section, it will be shown that the two corresponding coefficients, A j and
Bj , can be constrained when requiring the theory to be compatible with Friedmann
equations. However, condensate fluctuations are expected to break the homogeneity;
analogously as when in the cosmological model one considers deviations from the
cosmological principle. In such a case, “rods” must be reintroduced to locate these
deviations, whose power spectrum is probably expected to be associated to classical
inhomogeneities observed in the cosmic microwave background (CMB) spectrum. At
this point, the third term becomes meaningful. We will return to discuss this topic in
Sect. 5.

Interestingly, if one expands σ j in Fourier modes with respect to the spatial coor-
dinates pictured as the scalar fields φi , a complete set of solutions to (21) can be
obtained; this is

σ
Ki
j (φ J ) = eiKiφ

i

[
α+
j exp

(√
Bj+C j K 2

A j
φ0

)
+ α−

j exp

(
−

√
Bj+C j K 2

A j
φ0

)]
,

(22)

with α+
j and α−

j as arbitrary constants. The coupled scalar fields act as ‘tools’ to
define local coordinates; hence any coordinate system constituted by physical degrees
of freedom must be relational. In the limit in which they are turned off, we obtain a
homogeneous solution. Being the condensate wavefunction at a given time φ0 entirely
determined by just one geometric quantity, the spin j , the only geometric quantities
that can be extracted from this condensate wavefunction are isotropic quantities like
the total spatial volume, the Hubble rate, etc.

4 The Friedmann universe

Let us now consider proper GFT cosmological models. In this section it will be shown
how to obtain a FLRW universe from the condensate wavefunction (22). However,
we first give the main ingredients of cosmological implications derived from Gen-
eral Relativity to show explicitly how the previous approximations to GFT quantum
gravity formalism lead us to a quantum picture consistent with classical results in the
continuum and semiclassical limit.

4.1 Classical general relativity

It iswell knownhow to introducephysical reference frames andhow todefine relational
dynamics in general relativity. Let us consider a massless free scalar field that plays
the role of a relational clock in a flat FLRW metric of the form

ds2 = −N 2(t) dt2 + a2(t) dx3
2 . (23)
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The structure of the metric entails a foliation for the universe on isotropic and homo-
geneous hypersurfaces dx32 with flat intrinsic geometry in R

3 parametrized, relative
to one another, by a scale factor a(t).

The action for the scalar field, considering limiting cases in which the backreaction
of reference matter on the geometry can be neglected, is

Sφ = −1

2

∫
d4x

√−g gμν∂μφ ∂νφ ; (24)

hence the matter clock obeys the Klein–Gordon equation, which reduces to

∇μ∇μφ = 0 ⇒ d

dt

(
a3

N

dφ

dt

)
= 0 ⇒ a3

N

dφ

dt
= constant . (25)

The assumption of a nonnull constant provides a good characteristic for the clock φ;
as its corresponding momentum πφ is conserved, it has a monotonic evolution and
thus, it can be written as φ = φ0 T . If for instance φ0 has dimensions of mass, the
‘temporal’ scalar field T becomes dimensionless.

The other equation to solve is

(
da

dT

)2

= 4πG

3
φ0

2 a2 , (26)

which is a Friedmann equation giving two independent solutions:

a(T ) = a0 exp

(
±

√
4πG

3
φ

)
, (27)

each of them corresponds to an expanding or contracting universe, respectively.
According to the classical solution, a singularity V → 0 appears in the far past where,
due to our choice of time field φ, corresponds to infinity. However, this singularity is
reached in a finite proper time, if written in the propitious coordinates.

A quantum theory of gravity coupled to a massless scalar field should reproduce
at some point the last equation but avoiding the singularity behaviour. This is the
basic idea since the early days of quantum cosmology [68] that later on also informed
the foundations of LQC. The requirement for the temporal coordinate to satisfy the
harmonic condition avoids quantization ambiguities when choosing the lapse function
[69].

4.2 The homogeneous universe in GFT

At this point we have a condensate with an isotropic structure imposed from the
quantum symmetries. If spatial homogeneity is also desired, this would correspond to
demand the Fourier mode K = 0 for the mean field solution in the general solution
(22). This requirement makes the rods φi , with i = 1, 2, 3, meaningless, as there is
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no need to refer to locations over an exactly homogeneous state. Then, the mean field
would have the form

σ j (φ
J ) ≡ σ j (φ

0) , (28)

being only a function of one scalar “time field” φ0, playing the role of a relational
clock. This implies for the condensate wavefunction to become

σ j (φ
0) = α+

j exp

(√
Bj

A j
φ0

)
+ α−

j exp

(
−

√
Bj

A j
φ0

)
. (29)

Ifwe assume that the condensatemeanfield takes its homogeneous form, the associated
(background) universe of course would result homogeneous.

Once the mean field solution is found, it is of interest to define the relational
3−volume for this state. This can be done by means of the second-quantized ver-
tex volume operator. This one-body operator generically would define for the mean
field wavefunction (22) a local volume element at the spacetime point specified by
values of the reference fields, this is V̂ (ϕ J ). In the particular case of the homogeneous
universe under consideration, the constrain (28) would then define the element volume
only at a given relational “time” φ0

V̂ (φ0) =
∫

SU(2)4×SU(2)4
d4g d4g′ ϕ̂†(gI , φ

0)V LQG(gI , g
′
I )ϕ̂(g′

I , φ
0) . (30)

The matrix elements V LQG(g, g′) ≡ 〈gI |V LQG |g′
I 〉 are the matrix element of the

volume operator between single-vertex spin networks states in LQG [70]. Although
there are several different definitions of the volume operator in the theory [71–73],
all of them agree when 4−valent vertex are considered [74,75]. In fact, it is helpful
to choose a basis of intertwiners I that diagonalizes the action of the LQG volume
operator on a spin-network node.Hence, the heuristic picture for spin networks implies
for the underlying quantum theory that the quanta ϕ will carry a definite volume given
by the corresponding eigenvalue of the LQG volume operator, therefore interpreted
as “grains of space”.

This is not the case for the collective wavefunction. Let us now go back to the
homogeneous GFT state σ j (φ

0), the expectation value for the volume operator (30)
can be evaluated immediately when coherent states of the form (9) are considered

〈V̂ (φ0)〉 =
∫

d4g d4g′ σ̄ (gI , φ
0) V (gI , g

′
I ) σ (g′

I , φ
0). (31)

This result corresponds to the total 3−volume at a relational time φ0, associated to
such condensate state. This procedure is not a novelty of GFT; for instance, the total
volume of the universe at a fixed value of the scalar field is one of the main relational
observables of interest in LQC [69,76].

If we also impose the isotropic wavefunction constraint discussed in (19), since
the volume operator is diagonal when written in terms of SU(2) representations, the
volume expectation value of the condensate in such a state reduces simply to
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〈V̂ (φ0)〉 =
∞∑
j=0

Vj
∣∣σ j (φ

0)
∣∣2 . (32)

The latter expression is written in terms of the local particle number density for each
quanta of spin j . The approximate eigenvalue of the first quantized volume operator
acting upon a node, although depending on the intertwiner used to define D j (gI ), is
very well approximated for each j by Vj ∼ �3Pl j

3/2.
The evolution of the local volume elements then provides the macroscopic

behaviour of the state (29), which will depend on the choice of the initial parame-
ters α+

j and α−
j . Some general statements can be sketched out for some GFT models:

if the ratio Bj0/A j0 is positive and develops a maximum for a given j = j0, except for
the fine-tuned cases with α+

j = 0 or α−
j = 0, the spin j0 will dominate over all others.

Hence for almost any condensate homogeneous wavefunction of the form (28), its
associated volume will asymptotically behaves as

〈V̂ (φ0)〉 φ0→−∞−−−−−−→ ∣∣σ−
j0

∣∣2 exp
(

−2

√
Bj0

A j0
φ0

)
,

〈V̂ (φ0)〉 φ0→+∞−−−−−−→ ∣∣σ+
j0

∣∣2 exp
(

+2

√
Bj0

A j0
φ0

)
;

(33)

where the global constants are related to the volume eigenvalue assigned to the spin j0
by |σ±

j0
|2 = Vj0 |α±

j0
|2. In such a situation an exponentially large number of quanta are

characterised by a single spin j0 excitation, implying mainly a constant volume per
quantum. This domination of a single and small spin component in the cosmological
dynamics of the homogeneous and isotropic background can be shown to take place
at later times [77]; however it is also achieved exponentially fast and hence it can
be expected to be an acceptable approximation also at earlier times [66]. Thus, the
evolution of the total volume only depends on the growth of the number of particles
with spin j0 given by the exponential factor in Eq. (33).

These GFT states closely match the heuristic relation between LQG and LQC,
where this type of quantum states are usually assumed [78–81]. Despite the exact
relation between both theories remains open, some proposals analyse a cosmological
sector of LQG built up on states with large number of spin network nodes, all labelled
by the same quantum numbers. The nodes are considered to be disconnected and all
links are dressed with the same SU(2) representation label. Commonly, the spins are
taken to be j = 1/2, and homogeneity considerations justify the same number of links
per node, typically chosen as 4−valent nodes. Shortly, LQG also suggests to consider
quantum geometry condensates where all its constituents are quanta in the same state
[82]. All these features are naturally encoded in the cosmological results obtained from
the GFT formalism; hence the latter can be considered as a field theory reformulation
of LQG and spin foam models. However, it is worth mentioning that a derivation of
LQC from Hamiltonian formulations of LQG is a largely outstanding challenge [83].

Interestingly, for large (positive or negative) φ0, the coefficients A j and Bj are iden-
tifiedwith the low energy (emergent) Newton constantG as follows: Bj0/A j0 = 3πG,
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Eq. (33) reproduces the general solution of the Friedmann equation in (27). Therefore,
the resulting expression point towards a regimewhere the universe expands to amacro-
scopic size (if σ±

j0
�= 0). This compatibility was one of the main results of [38,58]

and is obtained for a range of parameters of the microscopic dynamics in a suitable
semiclassical regime and, as mentioned before, for generic initial conditions [77].

It is alsoworthmentioning some properties characterizing this range ofGFTmodels
with the desired asymptotic behaviour. First, at small volumes, in thePlanck regime, the
theory interpolates between the classical expanding and contracting solutions (27) of
the classical Friedmann dynamics. This implies that the universe undergoes a bounce,
i.e. the volume elements never go through zero avoiding or ‘resolving’ the classical
big bang singularity. In fact, it is possible to show that a singularity where 〈V̂ (φ0)〉
strictly vanishes for some value of the clock field φ0 is only possible for special (hence
fine-tuned) initial conditions. Therefore, instead of a singularity, there is just a very
dense region where an effective quantum force appears like a repulsion that prevents
the collapse. Secondly, the asymptotic behaviour in Eq. (33) shows an exponentially
growing phase in both temporal directions: to the far past and the future (contrary to the
classical solution that, as mentioned in Sect. 4.1, presents a singularity in the far past).
Third, properties of interest are the corrections to the classical Friedmann dynamics.
Similar derivations to LQC dynamics can be found from GFT condensate cosmol-
ogy; see for instance [84]. Indeed, when a single spin dominates, general mean field
solutions provide corrections that match with the “improved dynamics” of LQC [85].

More recently, a different analysis of GFT using Hamiltonian methods has been
developed in Ref. [86,87]; this topic is further discussed in Sect. 6. There are many
results that can serve as a starting point for GFT phenomenology: the generic quantum
bounce can be followed by a subsequent acceleration replacing inflation [88], the
inclusion of interactions in theGFT [67,89] and their subsequent effects which become
dominant away from the bounce.

5 Beyond homogeneity

One of the main points of any quantum gravity theory is how to derive relevant quan-
tities to be compared to standard cosmology and observations. An important step
towards a more realistic GFT condensate cosmology program is to construct more
realistic and testable situations, which would certain require to extend all results from
exactly homogeneous to inhomogeneous universes and to go beyond the considered
isotropic restriction. Recent advances regarding the later has already been mentioned
along this text; exploration of anisotropies can be found in [67]. If quantum gravity is
to offer the picture of the earliest moments of our universe, anisotropic perturbations
must play a role. For instance, the systematic investigation of them over an isotropic
background in the vicinity of the bounce can be found in [66]. Regarding the for-
mer, this section will briefly discuss how to address inhomogeneities and study more
general configurations and their dynamics.

Modern cosmology taught us that inhomogeneities in the very early universemay be
the seeds for structure formation [90]. Therefore, the extension of the GFT framework
beyond the spatial homogeneity by the encompass of cosmological perturbations into
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the formalism, would allow to construct more realistic cosmological scenarios where
inhomogeneities are present. The strategy is to compute the non-vanishing power
spectrum of cosmological perturbations over the mean field state discussed in previ-
ous sections. Following the analogy with Bose–Einstein condensates, perturbations
can be added to (29) in an analogous manner as phonons appear as deviations from
condensates with exact homogeneity. In fact, GFT phonons were firstly proposed in
[47], however their interpretation was not clear until rod matter fields were included.
With the inclusion of φi , quantum fluctuations in the local volume could be naturally
interpreted as seeds of cosmological inhomogeneities. Afterwards, these perturbations
around the mean field solution are to be converted into classical inhomogeneities in a
later stage of the universe [59].

Different approaches have been considered to include perturbations. For instance,
one can associate a constant mean field solution but only to ‘local’ patches, labelling
them by making use of the four scalar fields coordinates. The inhomogeneity relies
in the fact that different patches do not necessarily have the same constant mean field
solution, thus the effective homogeneous geometry does not necessary coincide among
different patches. This picture for incorporating inhomogeneities is based on the so-
called ‘separate universe approach’ [91,92], whosemain characteristics are considered
in the GFT condensate cosmology framework [93].

In the remaining of this section, we will focus first on quantum fluctuations of the
local 3−volume around the exactly homogeneous background condensate derived in
Eq. (29).With the aim of connecting GFT results to observations, since we do not have
direct access to local volume densities, the cosmological perturbations of physical rel-
evance are the matter density perturbations. However, the relation between the later
and the volume density perturbations is in general gauge dependent. We will finish
this review discussing how to extend the formalism to include perturbations in the
matter density. The GFT models discussed above have enough degrees of freedom for
describing inhomogeneous quantum geometries and their effective dynamics which is
expected to be a more realistic picture for fundamental cosmology. Quantum fluctu-
ations would then represent the quantum gravitational mechanism for explaining the
origin of these inhomogeneities. This procedure is analogous to the usual treatment
in inflation where the power spectrum of quantum fluctuations over a homogeneous
quantum state is computed (instead of a quantum state on a classically perturbed
geometry). These fluctuations are generically expected because of quantum uncer-
tainty and they would freeze out producing the classical pattern on inhomogeneities
currently observed in the CMB [94]. Besides, these homogeneities would provide a
lower bound on deviations from exact homogeneity in GFT [95].

5.1 Volume density perturbations

Let us consider the cosmological scenario in which a GFT condensate phase mod-
eled as a background state with perturbations on top of it, evolves to the expanding
universe of classical cosmology. For introducing vacuum fluctuations, the notion of
“wavenumber” is amust. If the starting point for localizing events in timewas solved by
the introduction of a scalar field φ0 used as a clock to label the evolution of the geome-
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try; the problem of localizing events in spacetime can be solved by re-establishing the
four scalar fields (in four spacetime dimensions), using now these scalars as a physical
coordinate system. The condition (28) must be relaxed so as to assign a clock and
3 rods to each point of the condensate to characterize deviations from homogeneity.
Consequently, one must replace also φ0 → φ J into the volume operator (30) from
where the effective cosmological dynamics has been derived from. Now, the operator
V̂ (φ J ) refers to the differential local volume element at the spacetime location spec-
ified by the components of the φ J field. Scalar perturbations in cosmology are then
obtained from perturbations in these local volume elements. Strictly speaking, V̂ (φ J )

corresponds to a density. The infinitesimal local volume is then V̂ (φ J ) δ4φ J and the
total 3−volume is obtained by integrating over the rods φi at a given moment of the
relational time φ0

V̂ (φ0) ≡
∫

d3φi V̂ (φ0, φi ) . (34)

This expression is still interpreted as the total volume of the universe modelled as a
condensate state, in analogy to (30).

The main idea is that cosmic structures are expected to be formed from early local
volume fluctuations. In the GFT cosmology approach, this pattern is expected to be
encoded in the correlation functions for the geometric observables. These correlation
functions encode the ‘true’ fundamental quantum dynamics. For the ongoing discus-
sion, let us compute correlations in local volume fluctuations over the state (9). It is
defined the local volume fluctuation operator as

δV̂ (φ J ) = V̂ (φ J ) − 〈V̂ (φ J )〉 (35)

with respect to the generalized volume operator V̂ (φ J ). Then, it is of interest to
compute the following two-points function

〈δV̂ (φ J ) δV̂ (φ′J )〉 . (36)

The idea of characterizing perturbations employing matrix elements of the one-body
squared volumeoperatorV 2(gI , g′

I ) is not new. This procedure has beenfirst presented
in [95] but without referring to any notion of rods. Consequently, the results that can
be derived from this formalism can only achieve global properties. Later on, in [60] the
formalism has been generalized to include rods. Thismodification enables us to extract
local information regarding perturbations. As it will be discussed in the following, the
transformation to momentum representation allows to write the power spectrum of
inhomogeneities into the usual Fourier space form.

Let us now consider perturbations around exact homogeneity. These are written as

σ j (φ
J ) = σ j (φ

0)
[
1 + ε ψ j (φ

J )
] ; (37)

where the field ψ j (φ
J ) represents condensate perturbations ‘located’ by means of the

four scalar fields. Fourier transforming three of them, the three scalar fields corre-
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sponding to the spatial directions defined by the rods φi to their momenta ki , notions
of wave length with respect to these reference frame fields are obtained. Following
[60], the power spectrum for the volume perturbations can be derived computing the
quantum fluctuations of the volume expressed as the two point function (36) for the
state (37), giving

〈V̂ (φ0, ki )V̂ (φ′0, k′
i )〉 − 〈V̂ (φ0, ki )〉〈V̂ (φ′0, k′

i )〉 = δ(φ0 − φ′0)
∑
j

V j
2
∣∣σ j (φ

0)
∣∣2

×
{
(2π)3δ3(ki + k′

i ) + ε
[
ψ j (φ

0, ki + k′
i ) + ψ j (φ0,−ki − k′

i )
]}

.

(38)

In agreement with the results obtained when considering an exact homogeneous back-
ground, the first term is naturally scale invariant with respect to the rod wavenumbers
ki , and its scale depends only on the reference matter through the matter clock φ0.
Besides, in this very same term, the delta function in the momentum implies a deep
connection between scale invariance and translational invariance. The second term
corresponds to first deviations from the scale invariant homogeneous mean-field, asso-
ciated to inhomogeneous fluctuations, which naturally have small relative amplitude.
In line with the usual cosmological perturbations, their shape must solve the conden-
sate dynamics and they are fully determined in a two-fold manner by the coupling
with the background on the one side, and by their own dynamics on the other one.

A magnitude of particular interest can be defined by the amplitude of the volume
fluctuations relative to the background; this is the quotient between at least the two
correlation functions (38) and the squared background volume regularized by the
integral over the added matter rods φi . This background volume computed in (34) can
be rewritten as

〈V (φ0)〉 =
∫

d3φi
∑
j

V j |σ j (φ
0)|2 , (39)

so that it is explicitly associated with the number of quanta that makes up the con-
densate. Recalling the previous analysis regarding states with a dominance of a single
spin j0 and keeping the dominant part of (38), the leading term of the power spectrum
of such perturbations becomes

PδV (k) = Vj0
2
∣∣σ j0(φ

0)
∣∣2

(∫
d3φi V j0

∣∣σ j0(φ
0)

∣∣2)2 = 1(∫
d3φi

)
N (φ0)

. (40)

In the last equality, the dependence with the number of quanta N (φ0) = ∫
d3φi

∣∣σ j0(φ
0)

∣∣2 has been made explicit in the denominator. Therefore, the relative ampli-
tude of these scalar perturbations decreases as ∼ 1/N ; i.e. they decrease with the
growth of the number of quanta N while φ0 evolves and the universe expands. In the
particular case in which C j/Bj < 0 in the equation of motion (21), at large volumes,
scale invariance is approached more closely. As reported in Ref. [60], inhomogeneous
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terms decay relative to the homogeneous background thus, under these conditions,
inhomogeneous perturbations are further suppressed. Besides, if interacting GFT are
considered [12], the obtained long-lasting accelerated expansion (after the bounce) is
accompanied by a further suppression of the deviations from scale invariance, suggest-
ing further investigations of GFT interactions. These scaling results are in agreement
with the typical relative size of fluctuations in a condensate. Analogously, these fluc-
tuations arise naturally in the GFT condensate approach, but within a quantum gravity
theory for gravity and matter, which has a properly defined ultraviolet completion.

5.2 Matter density perturbations

We have seen that perturbations of local volume observables around a quantum state
which solves the condensate dynamics and that thus depends on the approximation
scheme summarized in the previous sections, exist as quantum fluctuations given by
the two-point function (36). These perturbations can be expressed through the expec-
tation values and fluctuations of local volume elements given by the GFT Fock space
operator V̂ (φ J ) and in the hydrodynamic approximation, they have been generated
with a small constant amplitude at all scales in the Fourier modes ki and their ampli-
tudes. When only a single spin j = j0 dominates, their amplitude scales as

√
V (φ0)

as one would expect in general for extensive quantities such as the volume. Conse-
quently, its corresponding power spectrum is nearly scale-invariant; when the mean
field description is exactly homogeneous, an exact scale-invariant power spectrum for
volume density perturbations is found.

Although volume density perturbations are simple to compute in the full GFT
formalism staying within the full quantum gravity framework (but in a hydrodynamic
approximation), their relation to matter density perturbations are in general not gauge-
invariant and they can not be directly related to cosmological observables. The usual
gauge freedom of cosmological perturbation theory is absent because of the use of
the values of matter fields as relational coordinates. If the semiclassical low-curvature
universe describedwithin standard perturbation theory is preceded by a deep quantum-
gravity phase inwhich perturbations originate as quantumfluctuations of theGFTfield,
this field theory must be a field theory for quantum gravity and matter. Therefore, the
full calculation must involve quantum fluctuations both in the 3−volume element
and in the matter energy density of the scalar matter. Furthermore, their relation, in
general gauge dependent, must be connected to the usual gauge-invariant variables for
observable scalar perturbations in cosmology.

In the following we will review how to extend the previous arguments to pertur-
bations on the matter density. The starting point is the total kinetic energy for the
whole matter content introduced in the theory so far. In analogy with the classical
kinetic energy density of the scalar field, ρkin = π2

φ/(2V 2), one can define its corre-
sponding analogue in the GFT context by replacing the classical expressions with the
expectation values

ρkin =
3∑

I=0

ρ I
kin whit ρ I

kin = 1

2

〈π̂ I
φ(φ J )〉2

〈V̂ (φ J )〉2 . (41)
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The self-adjoint relational momentum operator of the scalar field φ I has been obtained
in Ref. [38] as the observable defined by setting O{ jI } = −(i/2)∂/∂φ I ; i.e.

π̂ I
φ(φ J ) = − i

2

∫
d4g

[
ϕ̂†(gI , φ

J )
∂ϕ̂(gI , φ J )

∂φ I
− ∂ϕ̂†(gI , φ J )

∂φ I
ϕ̂(gI , φ

J )

]
,(42)

and 〈V̂ (φ J )〉2 is the expectation value of the local volume element (30).
At leading order, perturbations in the total kinetic energy density (41) are given by

δρkin(φ
J ) =

3∑
I=0

π I
φ(φ J ) δπ I

φ(φ J )

V 2(φ J )
− 2 ρkin(φ

J )
δV (φ J )

V (φ J )
. (43)

As a consequence of the near-homogeneity assumption the dynamics is well approxi-
mated by ignoring spatial derivatives in favor of timederivatives. Therefore one expects
for the dynamics of the free scalar fields to be completely dominated by their kinetic
energy, neglecting any gradient energy. For a homogeneous, isotropic mean field of
the form (28), derivatives of σ j with respect to the rod fields vanish. Then we have

π i
φ ≡ 〈π̂ i

φ(φ J )〉 = 0 , (44)

for the three spatial scalar fields, i = 1, 2, 3. Therefore, the only nonnull conjugate
momentum fromEq. (42) isπ0

φ(φ0) = (−i/2) [σ̄ (φ0)σ ′(φ0)−σ̄ ′(φ0)σ (φ0)]. Accord-
ingly, Eq. (41) simplifies to ρkin = ρ0

kin and thus, only the clock field φ0 contributes
non-negligibly to (43). δπ0

φ(φ J ) and δV (φ J ) are the only corrections functions with
nonnull contributions.

To have a good reference frame, a nonzero energy density is ultimately required.
This energy density can be as small as desired, hence any infinitesimal perturbation
around the homogeneity restriction in Eq. (28) can lead to a good reference frame.
Therefore, if we assume a perturbation around (28) to be valid, one can consider null
its leading order in which such perturbations vanish exactly.

Taking into account all these simplifications, the fluctuations in the kinetic energy
reduces to the two-point function which can be ultimately simplified to

〈δρkin(φ0, ki ) δρkin(φ
′0, k′

i )〉
ρ2
kin(φ

0)
= 4

〈δV (φ0, ki ) δV (φ′0, k′
i )〉

V 2(φ0)
+ 4

〈δπ0
φ(φ0, ki ) δπ0

φ(φ′0, k′
i )〉

π0
φ
2(φ0)

− 8
〈δπ0

φ(φ0, ki )δV (φ′0, k′
i )〉

π0
φ(φ0) V (φ0)

.

(45)

All the terms in the later expression involve observables which are independent of any
of the rod fields φi , i = 1, 2, 3 (neither multiplicatively or in derivatives) and in the
considered approximation, the mean field has no dependence on these fields either.
For this choice of mean field, the first term has been already computed in the previous
subsection, where it has been shown that a scale-invariant power spectrum with small
amplitude is obtained. The other two terms written in this form behaves the same and

123



66 Page 28 of 36 L. Gabbanelli, S. De Bianchi

consequently, Eq. (45) give a scale-invariant power spectrum for both, matter density
perturbations and volume density perturbations, with the small amplitude still scaling
as 1/N , as expected due to genericmacroscopic observables defined formany-particles
states. However, scale invariance can be broken when different types of corrections are
taken in consideration. On first place, it has been discussed in the previous subsection
that if deviations from exact homogeneity are considered for the mean field, then
non-scale-invariant terms should be taken under consideration. With respect to matter
density perturbations, since at some point one should consider that rod fields acquire
a nonzero background energy density, then their contribution to the expressions for
perturbations should be also considered. This computation of this contribution can be
found in [60]. Besides, if the gradient energy that has been previously neglected is
taken into account, scale invariance is not expected in general to be preserve, even
for the homogeneous mean field restriction. Certainly, more work is needed to verify
whether the assumptions discussed here are dynamically justified, even in presence of
more realistic matter fields.

The results outline a concrete formalism for deriving a power spectrum of cos-
mological perturbations directly from a theory of quantum gravity, however to bring
results closer to observational tests, more work is required. Being cosmological per-
turbations seeded by the quantum fluctuations produced as the natural behaviour of
the quantum gravity condensate, one plausible situation is that perhaps, the observed
initial power spectrum of quantum fluctuations is a kinematical property at a given
time. However, this primordial quantum fluctuations must be converted into classical
perturbations during the propagation, “freeze out” and amplification when de universe
expands. Ref. [59], for instance, provides a physical mechanism for the emergence of a
slightly inhomogeneous spacetime, computing the transition from the initial quantum
fluctuations present in the deep quantum gravity regime to the usual gauge-invariant
variables for observable scalar perturbations in cosmology. This provides one more
step towards a connection with the potentially observable spectrum of classical per-
turbations from full quantum gravity.

As mentioned before, the definition of volume perturbations depends in general on
the chosen gauge, and its relation to the density perturbations and the curvature pertur-
bation variable can be expressed through the gauge-invariant “curvature perturbation
on uniform-density hypersurfaces” (see for instance [96])

ζ = � + H

ρ̇
δρ (46)

In the later formula, � is the Bardeen variable parametrizing scalar perturbations, H
is the Hubble parameter and ρ is the background matter density with δρ their corre-
sponding density perturbations. Although, different gauge choices permits different
relations between the terms in the r.h.s. of Eq. (46), this gauge freedom is lost due
to the introduction of the relational coordinates. In the GFT context reference scalar
matter fields define a harmonic gauge [97]. The full computation of the observationally
relevant dimensionless power spectrum of the gauge-invariant curvature perturbation
variable ζ in the GFT condensate approach can be found in [59] and its expression at
leading order is given by
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�2
ζ (k) ∼ mPl V

24π j03/2M4 k
3 . (47)

where magnitudes such as σ j has been eliminated in favor of the variables normally
used in cosmology: j0, the dominant spin; the Plank mass mPl ; V ∝ a3 is the total
volume of the condensate which is related to the scale factor defined implicitly in the
Hubble parameter in Eq. (46); and M , the mass scale set by the energy density in
the scalar field. An interesting feature of this result is that the spectral index derived
from this expression is ns = 4, which is consistent with semiclassical cosmological
calculations in the context of QFT in curved spacetime. Nonetheless, the original setup
of this cosmological scenario is very simple and only usesmassless scalar fields, hence
one does not expect any matching with the actual CMB observations, but to illustrate
what one would expect from the standard formalism within quantum field theory on
curved spacetime. It is clear that a generalization to more realistic models with more
complicated matter dynamics beyond free massless scalar fields is required to bridge
the gap between observations of the early universe and the condensate formalism.

Before concluding this section, let us mention another possible approach to GFT
condensate cosmology from which standard general relativity can be approximated
by means of effective corrections of quantum gravitational origin. A class of thermal
condensates can be constructed by making use of generalised equilibriumGibbs states
based on the maximum entropy principle, together with certain quantum many-body
techniques [98,99]. A tentative picture arising from this formalism models the uni-
verse as a finite temperature condensate phase representing the effective macroscopic
spacetime, together with a static thermal cloud naturally encoding the corresponding
quantum geometric statistical fluctuations over it. This model exhibits all the expected
features, i.e. coherence, entanglement and statistical fluctuations in a given set of
observables [100]. However, it displays two main differences with respect to the non-
thermal GFT condensate cosmology discussed in this review. On the one hand, it is
expected for the early time phase of the universe to be dominated by the thermal
cloud; on the other hand, the model recovers the expected cosmological dynamics at
late times when the thermal part is dominated by the condensate, but in this context
the latter is generated dynamically [100,101]. Let us remark that all results in GFT
cosmology are reproducedwhen the fluctuations are completely turned off, namely the
thermal states can be consistently reduced to the “zero temperature” coherent states
that have been used to obtain the effective description for the flat FLRW spacetime in
previous sections. However, these statistical coherent statesmay bring further progress
to GFT condensate cosmology program by offering a tangible and controllable way
of incorporating perturbations in relevant observables. Specifically, [101] computes
additional correction terms in the evolution equations finding a higher upper bound on
the number of e-foldsN even without including interactions. However, the increase in
N is still not sufficient to match the physical observations estimated at N ∼ 60. It is
expected that the condensate would be affected by the presence of the thermal cloud,
hence the relaxation in the static approximation of the latter implies modifications
during early phase in the previously studied GFT cosmological models [12,38], by
altering the inflation rate.
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6 Discussion and closing remarks

Relevant aspects of GFT cosmological implications have been discussed in this review
for the purpose of enriching the debate on the possible scenarios that a suitable theory of
gravity could open in cosmology. The consistency of the GFT condensate cosmology
has grown in the last couple of years because it could rely not only on the convergent
results with models derived from LQG. Further developments of the GFT approach
could provide more hints regarding the effective cosmological dynamics. Indeed, the
latter is a central open research field in GFT and focuses on the attempt at providing
some constraints to terms appearing in the GFT action (6). In this respect, a relevant
issue lies in determining which choices ofK and V (see Sect. 2) are required to obtain
a suitable quantum gravity theory that recovers general relativity in the classical limit.
We want to focus on two different research lines in GFT approaches studying the
effective macroscopic dynamics that builds up the cosmological model and that can
be of interest for those working on others than GFT methods.

(1) The first one according to which within the GFT condensate cosmology is possi-
ble to realize an early era of geometric inflation. This is a period of accelerated
expansion in absence of an inflaton field and its associated ad hoc potential. A
detailed study of the condition for inflation can be found in [13]; however, in [102]
it is argued that the number of e-folds computed for the free theory –V = 0 in the
action (6)– suggests that such a geometric inflation cannot last sufficiently long
to accommodate observational data. This implies that GFT cosmology in absence
of interactions between building blocks cannot replace the standard inflationary
scenario. Studies explore the implications of including these interactions, which is
indeed amore natural and consistent scenario, as the quanta of geometry should be
somehow ‘glued’ among each others instead of being in a sort of diluted gas regime
of tetrahedra. Therefore, the results obtained in [12]may be able to give an alterna-
tive prescription on how to build a GFT model with specific type of interactions,
such that in the semiclassical limit the desired properties of our homogeneous
and isotropic universe are obtained as an emergent 3–geometry. Interestingly, in
the interacting case, one can find a range of the parameter space for which the
inflationary era last for sufficiently long. However, to obtain a successful scenario
one needs to verify that there is no intermediate stage of deceleration between
the bounce and the end of inflation. According to [67] a real-valued condensate
field has solutions avoiding the singularity and also growing exponentially after
a bounce, if and only if the GFT energy is negative. A discussion on the possible
values of the parameter space of the interacting potential can be found in [102],
together with the stability properties of the evolving isotropic system, giving rise
to effective continuous and homogeneous 3–geometries built from many smallest
and almost at building blocks of quantum geometry.

(2) The second research line is based on the successful use of relational observables
to extract an effective dynamics in the cosmological sector of GFT10. Particularly

10 Anyway, in order to translate the theory into a set of equations for cosmological observables, the addition
of a scalar field variable is crucial, since it allows us to define within the full theory a set of relational
observables with a clear physical meaning. In GFT approaches we find models including a scalar field as
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interesting consequences have been derived using condensate states of a GFTwith
a relational Hamiltonian Ĥ generating the evolution with respect to a massless
scalar ‘clock’ field φ0. This approach, initially proposed for a toy model in [84],
postulates a canonical reformulation of the classical GFT action making use of
classical “sametime” Poisson brackets and providing a new path to define a quan-
tum theory for GFT. It is based in a deparametrized setting in which some degrees
of freedom (in the current discussion the singled out variable in the domain of
the GFT field that corresponds to the scalar field degrees of freedom) serve as
‘coordinates’ parametrizing the remaining ones. Concretely, one defines ‘equal
relational time’ commutation rules for the fundamental operators corresponding
to theGFT field ϕ and its conjugatemomentum. This procedure of choosing a suit-
able matter degree of freedom as a ‘clock’ before quantisation is performed at the
level of the collective, coarse-grained description of the microscopic GFT degrees
of freedom, hence providing a “proto-geometric” notion of relational dynamics
[86,87]. Nonetheless, this approach shows the limit of postulating a “tempus ante
quantum” structure, since it precludes access to the quantum properties of the
sub-system chosen as a clock [61]11.

In our view, the above-mentioned relational standpoint represents a fruitful field
of investigation, suggesting important conceptual implications. Indeed, if physical
systems evolve with respect to internal dynamical degrees of freedom of the the-
ory, notions of physical clocks and rods should be searched in the well-behaved
fundamental degrees of freedom. Recent insights in this direction deepen the rela-
tional strategy to solve the problem of time in emergent gravity. For instance, in
[61] it is addressed the contribution of the quantum properties of the relational
clock to the effective dynamics and in particular, [113] analyses how the clock’s
properties define the evolution and determine the resolution of the initial singular-
ity.

Furthermore, an intriguing conceptual implication of this relational approach is
that spacetime and, hence geometry, dissolves in pre-geometric “atoms” and the
recovery of gravity is postulated as an emergent phenomenon deriving from their
collective behaviour. Examples of these pre-geometric structures can also be the
spin networks of LQG, the simplicial (piecewise-flat) geometries of lattice quan-
tum gravity and, as it was extensively discussed, the quanta of GFT which can be
understood as either spin networks and simplicial geometries of lattice quantum

Footnote 10 continued
matter content. The use of matter reference frames is not new; it dates back at least to DeWitt proposal
[103] where coordinates are proposed to be constructed with convenient matter scalar variables (in [104] an
extended discussion can be found). More contemporary advances have been obtained by using dust matter
to account for this effect. First insights have been proposed by Brown and Kuchař [31] and generalizations
to LQG have been developed in Ref. [105]. Relevant advances have been done also by Gielen [60,97].
With regard to models constructed from the theories discussed in this review, the employment of a massless
scalar field as a relational clock defining relational dynamics also appears in canonical LQG [106] and LQC
[107,108].
11 It would be interesting to contrast the latter deparametrized framework for a single clock with a covariant
setting in which one can choose different clocks, following the ideas of [109–111]. In this respect, recent
work has been done by [112].
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gravity, or as the causal sets in causal dynamical triangulation among other possi-
bilities.

Nevertheless, to achieve the resulting collective structures one requires one more
step, namely one needs a suitable averaging/coarse-graining procedure from where
approximately continuous and regular structures emerge and allow to label the evo-
lution of other degrees of freedom in the theory. Within the GFT approach, this
is commonly known as the ‘proto-geometric’ phase of the theory. Thus a suit-
able clock should be searched in the ‘proto-geometric’ regime. According to our
discussion, massless scalar fields are attached to each GFT entity, implying for
each “single-quantum time” a pre-geometric interpretation. This means that the
existence of a large number of quanta brings the complicated problem of recon-
structing collective, coarse-grained synchronized states with an internal variable
that could be used as a “relational clock” [61]. Contrary to the classical con-
text where the troublesome diffeomorphism-invariant set up is circumvent by using
specific solutions involving special isometries to which preferred temporal and/or
spatial directions can be associated, in the quantum setting this solution is not
allowed. Thus, one has to deal with the absence of preferred temporal and/or spa-
tial directions. Future research in GFT will show whether this picture is consistent
and will further explore its implications for Quantum Gravity theory and cosmol-
ogy.
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