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Abstract

In this work we present an epistemic analysis of time phenomenon
using the mathematical machinery of information theory and modu-
lar theory. By adopting limited commitment to the ontology of time
evolution, and instead by mainly relying on the information that is
in principle accessible to the observer, we find that the most primary
aspect of the temporal experience, the perceived distinctiveness across
the states of the world, emerges as a purely epistemic function. By
analyzing the mathematical properties of this epistemic function, we
interpret it to be in principle insensitive to any ontic state of the
world, which leads to the conclusion that the observer is subject to
temporal experience irrespective of whether the underlying state of
the world is dynamical or invariant. On the ground of the presented
analysis, we also provide a solution to the conceptual challenge of
non-equilibrium phenomena that faces the thermal time hypothesis.

Keywords: Epistemic analysis of time, Relative Entropy, Information theory,
Von Neumann algebra

1 Introduction

What does the phenomenon of time consist of? Within the phenomenology
of time [1–3], the most primary aspect of the temporal experience is viewed
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to be constituted by the perceived change in the state of affairs, the distinc-
tiveness of the states of a system from one moment to another, in the eyes of
the observer. An obvious, yet central point is that for the notion of change to
make any sense at all, the observer should be able to distinguish the states
of the observed system from one moment to the next by contrasting them
against each other. Therefore, the apprehension of time becomes possible in
the observer’s capacity to distinguish the states of affairs, that are distinct
but not isolated, through observing the world around themselves i.e. through
performing measurements. Our contribution focuses on the way in which we
understand the change or the dynamics from the perspective of an observer.
In physics however, one understands the change or the dynamics of a system
in terms of a time-evolution operator that drives the system from one state
to another. For instance, in quantum theory, the state of a system changes
according to some unitary transform which might have been generated inter-
nally or externally to that system. Furthermore, the restriction of this unitary
transform to subsystems can induce a change with some direction e.g. ten-
dency towards disorder.

The correspondence between these two notions of change, one due to the
physical evolution encoded in dynamical operators, and the other due to the
observer’s perception of variation appears quite blurry. More concretely, is it
possible for the world to be in an invariant state, but nevertheless to appear
as dynamical? Or can the behaviour of a subsystem that is governed by an
entropy-decreasing transform appear to be tending towards disorder? In other
words, how big is this apparent gap between an ontic notion and an epistemic
notion of change?

This work is an attempt to explicate the phenomenon of time, which adopts
limited commitments to the ontology of time evolution, and instead takes
on an epistemological attitude, and relies solely on the information that is
in principle accessible to the observer. Here we subscribe to the view [4, 5]
that any epistemic inquiry takes place within a context that itself is immune
from skeptical assessments. That is, in each context there exists a set of com-
mitments or ‘hinges’ on the ground of which the epistemic practice becomes
possible. In this work the hinge consists of the belief that our world admits
a local and unitary structure that is depicted [6] by the language of type III
von Neumann algebra [7, 8] , of which an observer can in principle obtain or
construct information through local measurements.

Our goal thus is to provide an epistemic analysis of the time phenomenon
from within the framework of type III von Neumann algebra and information
theory. Type III structure implies two important properties that will play a
crucial role in our analysis. The first property is the unavoidable presence of
entanglement across regions of space time and their causal complements [9].
The second property is that the type III structures are intrinsically dynamical,
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a result that as has been analysed and understood using the mathematical
machinery of modular theory [10]. We will see that in this approach, time
phenomenon emerges as an epistemic function with the property that it is
in principle insensitive to any particular ontic state of the world, and con-
sequently insensitive with respect to any ontic evolution of the world as all
the other global states induce the same phenomenon. On the ground of this
analysis, we will also be able to provide a solution to one of the conceptual
problems that is linked with the Thermal Time Hypothesis [11], which has
been recently voiced [12]. Thermal time hypothesis as a solution to the prob-
lem of time in generally covariant quantum theories, is the proposition that
time has a thermodynamical origin. That is, based on the modular theory
of von Neumann algebra, any state defines a mathematical transform with
respect to which it is in equilibrium, and this transform is the experienced
time flow. The problem with this claim is that it does not seem to address the
highly non-equilibrium phenomena that we perceive around us since the state
of the world that determines the time flow remains at thermal equilibrium
with respect to this flow. We will see how does this conceptual issue can be
dissolved within the analysis developed in section 4.

In section 2, we review the concept of relative entropy and distinguishability
in information theory, and discuss the key result of monotonicity. In section
3, we provide a brief introduction to the type III von Neumann algebra, and
discuss the two central concepts of entanglement and modularity and their
operational interpretations, which apply to this structure. In section 4, we
present an information-theoretic definition of change, and by analysing its
algebraic properties we discuss some of the key conceptual implications in
regards to the emergence of the time phenomenon. In section 5, we address
the conceptual issue of non-equilibrium phenomena, which is linked with the
thermal time hypothesis, and argue how this problem is dissolved within the
approach that we pursue. Finally, in section 6, we conclude by reflecting on
the potential directions in which the presented analysis can be furthered.

2 Relative Entropy: A Key Concept

Since the connection between the perception of change in the state of a
system and the capacity to distinguish the system’s distinct states plays an
essential role in our analysis, we would like to have a mathematically sharp
understanding of distinguishability.

Central to a rigorous description of distinguishing is the measure of information
or surprise [13] that is associated with a probability distribution. Suppose that
a certain event x has an occurrence probability of px. If the event is highly
probable, it will be little surprise when it happens, and thus the transmission
of the message indicating that x has occurred carries very little information.
On the other hand, if px is very small the occurrence of x as a rare event is
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highly informative. Therefore, the information (surprise) content of an event
x is a function that increases as px decreases, and can be expressed as − log px
1. It can be easily seen that the average amount of surprise in a set of events
{x} with the corresponding probability distribution {px}, or alternatively, the
information content of a message comprising the occurrence of a sequence of
events {x} with probabilities {px} is

H(p) = −
∑
x

px log px.

H(p) is called the (Shannon) entropy associated with px. Now suppose that the
probabilities for a collection of events {x} is {px}, but we erroneously believe
it to be {qx}. Based on this false belief, the surprise associated with a certain
event x is − log qx, and subsequently, the average surprise or the information
content of a message comprising the occurrence of a sequence of events {x}
is −

∑
x px log qx (since irrespective of our false belief the event x occurs with

probability px.) For instance, we typically assume that a coin to be fair e.g.
if thrown many times, the distribution of heads and tails are equal, whereas
in reality this assumption is never true, and after many trials of throwing the
coin we become aware of a discrepancy between the expected and the observed
outcomes. This discrepancy that is given as the difference between the average
surprise associated with the expected probability distribution q and the real
probability distribution p:

H(p, q) =
∑
x

px(log px − log qx)

is called the relative entropy, a mathematical concept that was originally
developed in cryptanalysis [14], and it is a measure of how distinguishable
are two probability distributions from one another, or alternatively, it is a
measure of how likely it is to confuse the information contents of two distinct
messages. For a pair of probability distributions {p, q} that are indistinguish-
able the relative entropy H(p, q) = 0, and this is true if and only if p = q. In
contrast, for a perfectly distinguishable pair, H(p, q) = ∞. To illustrate this,
imagine that we are in possession of a fair coin but we are under the impres-
sion that the coin is completely unfair e.g. the coin always comes up heads.
In the course of throwing this coin few times, the coin will eventually land on
tails, which leads to our immediate realisation that the held assumption was
incorrect . That is, we are able to perfectly distinguish the expected distribu-
tion from the observed one. By computing the relative entropy for this coin
example one obtains H(p, q) = ∞. On the other hand, if our erroneous belief
was that the coin is partially unfair e.g. the coin comes up heads third of the
time, the corresponding relative entropy would have been finite. This implies
the expected and the observed distributions are not perfectly distinguishable,
and the only way for us to be able to gain full confidence in their distinction

1The reason behind a logarithmic definition of information content of an even is the additivity
of the amount of surprise associated with the occurrence of two independent events x and y:
− log pxy = − log px − log py .
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is to throw the coin infinite number of times.

Let us consider the situation where {x} and {y} are two collections of events
with the joint probability distribution pxy, and that we mistakenly believe
that the joint distribution to be qxy. After many trials, our confidence that
our belief is false is determined by the relative entropy H(pxy, qxy). But sup-
pose that we only observe {x} and not {y}, in which case our confidence in
differentiating the believed distribution from the observed one is computed in
terms of the relative entropy between the marginal probability distributions
px =

∑
y pxy and qx =

∑
y qxy. The monotonicity [15] of relative entropy

implies that the distinguishability between the probability distributions of a
system never increases as we restrict our observation to part of the system by
integrating out the rest:

H(px, qx) ≤ H(pxy, qxy).

The intuition behind the monotonicity is that our ability to distinguish two
probability distributions always decays under coarse graining [16]. That is, as
our access to the distributions becomes less precise, the distinction between
them becomes less visible.

Quantum mechanics can be viewed as the non-commutative [8, 17] generali-
sation of the classical commutative probability theory. This view of quantum
theory allows us to generalise the analysis of distinctions across probability dis-
tributions in classical systems to distinctions across states in quantum systems.
More concretely, in transitioning from the classical theory to the quantum
theory, the commutative space of events with a corresponding probability dis-
tribution is generalised to the non-commutative space of observable algebras
with a corresponding state that is a positive, trace-class linear operator on a
Hilbert space with unit trace. The state ρ defines a normalised positive lin-
ear functional over the set of observables A as the average or the expectation
value of A:

ρ(A) = TrρA. (1)

Similar to the classical probability theory, the information or the surprise asso-
ciated with a state ρ is defined as − log ρ, and using Eq.(1), the average surprise
or the information content of ρ reads:

H(ρ) = ρ(− log ρ) = −Trρ log ρ.

H(ρ) is called the (von Neumann) entropy of the state ρ. In order to obtain
a better understanding of entropy in quantum systems let us consider the
example where ρ describes the state of a two-level system {|±〉}. If ρ is a pure
state and we are told what that state is, there will be zero surprise associated
with the result of our observation (measurement). For instance, let us assume
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that the system is prepared in the ground state ρp = |−〉〈−| or in some
superposition of ground and excited state ρp = 1/2{(|+〉 + |−〉)(〈+| + 〈−|)},
and we have been informed of these state preparations. One can easily check
that the entropy for both of these states is zero. This means that the result of
our measurement will always be in full agreement with our expectation, and
thus our observation will be devoid of any uncertainty. Therefore, a pure state
can be interpreted as a state of which perfect knowledge can be had, and that
leads to the absence of any surprise, or alternatively, to the absence of any
information conveyed upon observing it. This is analogous to the classical
case where the event x occurs with unit probability, and therefore the degree
to which we are surprised after observing its occurrence is zero.

In contrast, for a system that is prepared in a mixed state, ρm =
1/2{|+〉〈+| + |−〉〈−|}, the entropy is non-zero, which implies that there will
be a degree of uncertainty built into this system, and that inevitably leads to
some degree of surprise in the result of our observation. That is, in principle
for mixed states a perfect knowledge of the outcome of a measurement can
not be had beforehand. An insightful way of interpreting a mixed state is
to consider the system of interest to be sharing a pure entangled state with
an ancillary system to which we do not have any access. In this view, the
presence of surprise in our observation is rooted in our ignorance in regards
to the pure state of the entirety of this bipartite system.

Analogous to the classical systems, relative entropy in quantum systems is
defined as the difference between the average surprise associated with the
expected and the real state of that system:

H(ρ, σ) = Trρ(log ρ− log σ). (2)

H(ρ, σ) is measure of how well an observer can distinguish the state ρ from
σ through measurements. Finally, the monotonicity of relative entropy in
quantum systems [15] implies that distinguishability never increases under
restriction:

H(ρA, σA) ≤ H(ρAB , σAB) (3)

where ρAB denotes the state of bipartite system AB , and ρA is the reduced
state obtained by restricting our access to the subsystem A, which can be
mathematically implemented through a partial trace over the subsystem B:
ρA = TrBρAB . To illustrate the significance of Eq.(3) let us consider both
the expected and the real bipartite states to be entangled and perfectly
distinguishable:

ρAB = |ψ〉〈ψ| with |ψ〉 =
1√
2
{|+ +〉+ | − −〉}
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σAB = |φ〉〈φ| with |φ〉 =
1√
2
{| −+〉+ |+−〉}

Form the perspective of a global observation the bipartite states are perfectly
distinguishable H(ρAB , σAB) = ∞. In the eyes of a local observer who is
restricted to either one part of the system however, the two states are indistin-
guishable H(ρA, σA) = 0. In other words, restriction to any part of a composite
system in an entangled state leads to the loss of information that is shared
across the global state, and this inevitably results in the decay in observers
ability to tell states apart, hence the reduction in the relative entropy.

3 The World in the Language of Type III
Algebra

In this section we will address the structure of the world in which the observer
is situated, and the commitment to this structure functions as the hinge in
our epistemic analysis. This hinge is the belief that the world or the context
in which the observer is situated admits a local and unitary structure, which
is depicted by the language of type III von Neumann algebra.

The phenomena in quantum regime are described in terms of the algebra of
observables and their expectations, which is the non-commutative generaliza-
tion of the commutative algebra of events and their expectations in classical
probability theory. It turns out that the non-commutative probability theory
can be rigorously modeled by the von Neumann algebra [8, 17].

A von Neumann algebra N can be construed as the ∗-algebra of bounded
operators B(H) on a separable Hilbert space that is closed under weak lim-
its. The term ∗-algebra simply means that if the operator A lives in the
algebra, so does its adjoint A∗, and moreover, the observables of the theory
are represented by those operators that are self-adjoint: A = A∗. The term
closure under weak limits addresses the boundaries of the algebra, and can
be interpreted in the following way. If the expectation value of a sequence
of operators {A1, ..., An} ∈ N , converges to the expectation value of some
operator A as n grows, then A is also included in the algebra. In other words,
if the observer can not distinguish the operator A from An at large n through
measurements (that are encoded in the expectation values of the operators),
then from the perspective of this observer A = limn→∞An. Therefore, a von
Neumann algebra can be thought of as a formal language in terms of which
the quantum phenomena, that appear to the observer through measurements,
can rigorously be depicted.

In a sequence of papers [18–21] Murray and von Neumann investigated certain
class of algebras called factors. The idea behind a factor is to distill the algebra
N into separate commuting sub-algebras N = R ∪R′ that only share trivial
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elements with each other:

R∩R′ = CI.

The theory of factors was mainly motivated by the question regarding the
divisibility of the world as a quantum system into separate independent sub-
systems. More concretely, the theory concerns the conditions under which an
algebra describing a quantum system can be broken down into factors each
describing the corresponding subsystem, and this lead to the classification of
factors into types: I, II, and III.

In the case of type I, the algebra is factored based on the tensor-product
factorisation of the underlying Hilbert space of the system, H = H1 ⊗ H2 .
The observables of each subsystem belong to the algebra of bounded operators
that act only on the Hilbert subspace corresponding to that subsystem: R1 =
B(H1)⊗ I and R2 = I⊗B(H2). In this way the algebra of the entire system is
factored :

N = R1 ∪R2 = B(H1)⊗ B(H2).

Type I factors depict quantum phenomena in a world that is not local, and in
which systems can be broken down into individual subsystems. In other words,
in a world in which observers do not perceive locality, quantum phenomena
can be faithfully formalised in terms of the type I von Neumann algebra.

As locality enters the world of the observer, the type I picture of the world
no longer holds. This has been illustrated by a rigorous analysis [22] of the
gedankenexperiment proposed by Fermi [23]. The experiment consists of a
pair of two-level system placed at some finite distant d from each other,
and where one system is in the excited state and the other in the ground
state, {|+〉1, |−〉2} . If at some point the exited system decays by emitting
a photon, then the probability that the second system will become excited
should not change at least for the duration of d/c where c denotes the speed
of light. However, by analysing the experiment within the type I structure,
where the Hilbert space of the entire system is factored into separate individ-
ual subspaces, H = H1 ⊗ H2 ⊗ H3, corresponding to the systems 1, 2, and
the photon, one computes this probability to be nonzero2 instantly after the
excited system has decayed. More concretely, the excitation probability for
the second system is encoded in the observable P = I1 ⊗ |+〉2〈+| ⊗ I3 ∈ R2,
for which the expectation ρ(P (t)) 6= 0 for t > 0. That is, the application of
the type I picture in alaysing the gedankenexperiment leads to the violation
of locality as perceived.

2The interaction Hamiltonian is bounded.
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Type III factors, on the other hand, depict a quantum mechanical world, in
which systems have well defined localisation properties. In this picture, the
Hilbert space of the world is not factored into separate, individual subspaces
with corresponding observable algebras, but instead is enframed by a net
of observable algebras. More specifically, in this picture, the von Neumann
algebra is factored by associating to each bounded region of space time a set
of observables that encode the physical properties of the global system from
the perspective of an observer located in that region. In other words, in the
type III structure, the idea of subsystems with their own observable algebras
is dissolved, and is replaced by the idea of bounded regions of space time with
the corresponding observable algebras localised in those regions, and it is
through these local algebras that the entire system (with its unbroken Hilbert
space) is observed.

Therefore, in type III setting, the algebra of observables are labeled by the
region in which they reside: RO ≡ N (O), where O denotes an arbitrary space
time region. The operational interpretation of this labeling is that two distinct
states {ρ, σ} are indistinguishable from the perspective of the observer located
in O when :

ρ(A) = σ(A) for all A ∈ RO.

In other words, the observer who is situated in the region O observes the
world by performing measurements on the observables at his disposal, RO,
and as long as the results of these measurements coincide for the two distinct
states, the observer can not tell them apart. Within this frame, the gedanken-
experiment can be rigorously formalised without leading to any violation of
the local and causal structure of the space time as following.

The observable algebra Ri in type I frame is replaced with ROi
where Oi =

t×Vi ∈ R4, is the space time region - comprising the spatial volume Vi at time
t - in which the system i is localised . In order to observe the effect of the first
system’s decay on the second system at any time t , the observer who is located
in O2 must contrast the global tripartite state ρ (representing the case where
the system 1 has not decayed) against the state σ (representing the case where
the system 1 has decayed a photon). These two states are indistinguishable
in the eyes of this observer who has access only to the observables A ∈ RO2

for the duration t < d/c where d denotes the spatial separation between the
regions V1 and V2 :

ρ(A(t)) = σ(A(t)) for all A(t) ∈ RO2 .

In contrast, from the perspective of an observer who has access to the observ-
able (projection) P = I1 ⊗ |+〉2〈+| ⊗ I3 ∈ R2, the states ρ and σ can be
distinguished at any time t > 0. In other words, this observer interprets the
state σ as a non-zero probability measure for the excitation of system 2. But
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the projection P is a nonlocal observable (an element of type I factor), to
which the observer localised in O2 has no access, and thus in their eyes the
probability for the excitation of system 2 remains zero during t < d/c.

Type III factor, as a mathematical framework for describing local quantum
phenomena, has two important implications: (i) the unavoidable presence of
entanglement in the global state across separated regions of space time, and
(ii) the existence of an intrinsic notion of dynamics - the modular structure -
encoded in the algebra of local observables.

A remarkable consequence of locality in quantum systems, as represented in
the language of type III von Neumann algebra, is that any global state with
bounded energy is entangled across regions of space time. More precisely, this
is an implication of the Reeh-Schlieder theorem [24], which states that any
global state with bounded energy is cyclic for every local algebra. The cyclic
property means that the action of the local algebra RO on any global state Ψ
with bounded energy, can generate any other state on the entire Hilbert space
to an arbitrary accuracy:

RO|Ψ〉 = H.

Reeh-Schlieder theorem implies that by acting on a state such as vacuum Ω
by an operator located in a bounded region O, one can generate an arbitrary
influence outside O in the causally disconnected region O′, which is described
by some excited state Ψ, RO|Ω〉 = |Ψ〉. To illustrate the operational implica-
tion of this, let us imagine the observable A′ ∈ RO′ that has zero expectation
for the vacuum state Ω, and unit expectation for the excited state Ψ e.g. A′ can
encode the probability for the existence of some particle or some complex sys-
tem in the region O′ : ω(A′) ≡ 〈Ω|A′|Ω〉 = 0 and ψ(A′) ≡ 〈Ψ|A′|Ψ〉 = 1. But
according to the Reeh-Schlieder theorem, A|Ω〉 = |Ψ〉 for some local operator
A ∈ RO, which leads to the equation:

ω(A∗AA′) = ψ(A′) = 1 (4)

where we have used the commutativity between the local algebras of space-
like separated regions RO and RO′ : [A,A′] = 0. One can clearly see that
the global state ω(A∗AA′) can not be factored in terms of the product of
the local states - the restriction of the global state to the regions O and O′:
ω(A∗AA′) 6= ω(A∗A)ω(A′), for otherwise, this would violate the Eq.(4) since
ω(A′) = 0. This means that the pair of commuting observables {A∗A , A′},
are correlated in the vacuum state. It turns out that these observable pair
correlations are symptomatic of a much profound property linked with the
vacuum state, namely, the entanglement [9, 25] across the entire region O and
its causal complement O′:

ω(AA′) 6= ω1(A)ω2(A′) for all A ∈ RO, A′ ∈ RO′ .
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To see whether the entanglement is unique to the vacuum state or whether
it is a generic property of type III structure, let us imagine that there exists
a global state that is not entangled across the local algebras. Due to the
Reeh-Schlieder theorem, one could then generate any other state (including
the vacuum state) in the Hilbert space by acting on this global state with
some local operator. However, since entanglement, as a global structure, can
not be induced locally [25], all the generated states are likewise not entan-
gled, which contradicts the fact that the vacuum is an entangled state. An
important observation here is that this entanglement is a direct consequence
of imposing a local structure upon the algebra of observable. Moreover, the
degree of entanglement across adjacent regions such as O and O′ is universally
divergent [26], and does not depend on any particular state, and as stated
by E. Witten [9]: ‘This ultraviolet divergence means that the entanglement is
not just a property of the states but of the algebras of observables.’

In this work, we are interested in a certain class of local algebras called
diamonds that encode the observable world of an observer with a finite
lifespan. A diamond is an algebra of observables that are localised within a
diamond-shaped region of space time bounded by the intersection of the future
light-cone of when the observer is created, and the past light-cone of when
the observer is annihilated. Therefore, a diamond represents the world that is
accessible to a finite observer for measurements. An important property of the
diamond R� is that the entanglement across R� and R�′ can not be broken by
local operations such measurements [25]. The operational meaning of this is
that the local observer can never disentangle their observable world from the
rest of the universe by measurement, and therefore, form the perspective of the
observer, the world always appears in a mixed state with intrinsic uncertainty.

A mathematically rigorous machinery in which one can analyse the structure
of the algebras that are intrinsically entangled is called the modular theory or
the Tomita-Takesaki theory [10]. The modular theory entails the existence of
a notion of dynamical symmetry that is inherited in the structure of the local
algebra. This intrinsic symmetry was discovered through the investigation of
a curious mismatch between the algebraic structure of the observables on one
hand, and the induced geometric structure of the Hilbert space on the other.
More concretely, the isometry induced by the adjoint operation of the local
algebra: SO : A → A∗ is broken by the geometric structure of the generated
Hilbert space: SΨ : A|Ψ〉 → A∗|Ψ〉, where Ψ is a global state with bounded
energy i.e., Ψ is a cyclic and separating3 state of the local algebra RO. The
operation SΨ can be broken down in terms of a pair of operators:

SΨ = JΨ∆
1/2
Ψ

3A state Ψ is called separating for RO if A|Ψ〉 6= 0 unless A=0 for all A ∈ RO.
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where JΨ is an anti-unitary operator, and ∆Ψ is a self-adjoint positive operator.
It is the existence of the nontrivial operator ∆Ψ, the modular operator, which
breaks the isometry in the structure of the Hilbert space, for JΨ can simply
be viewed as a reflection around a certain point, and thus it does not induce
any distortion in the metric structure of the Hilbert space. The pair {JΨ,∆Ψ}
encode invaluable information about the structure of the algebra, on which the
modular theory is based. The essence of the modular theory is that the modular
operator ∆Ψ gives rise to a symmetry, the unitary group of automorphisms αΨ

t

under which the local algebra RO remains invariant:

αΨ
t [RO] ≡ ∆it

ΨRO∆−itΨ = RO , t ∈ R.

In other words, αΨ
t is a global unitary transform, the restriction of which to the

space time region O preserves the associated local algebra RO. It is important
to note that the modular operator ∆Ψ contains information of both the local
algebra and the global state Ψ, and thus as a global operator, it is external to
any region of space time. The operational implication of this symmetry is that
the state of the world from the perspective of a local observer who senses the
world through RO remains unchanged under the global unitary transform αΨ

t .

As we will see, the modular automorphism gives rise to the “time flow” of the
observable algebra, which is generated from within the algebraic structure -
the modular structure. Put differently, the observable algebra, because of its
modular structure, is exposed to this dynamical symmetry that is generated
intrinsically by log ∆Ψ

4. Finally, we would like to refer to an important result
in the modular theory of type III structures due to Connes [8]: a set of two
modular automorphism {αΨ

t , α
Φ
t } induced by the same local algebra RO, but

by two distinct states {Ψ,Φ} are inner equivalent. Inner equivalence simply
means that the two modular automorphisms are equivalent up to a unitary
transform u ∈ RO. To understand the implication of this equivalence one
should note that the modular automorphisms are global operators, and can not
be solely generated from the local algebra as ∆ 6∈ RO, but instead are induced
by both the local algebra and some global state. The inner equivalence however,
implies that this global state is arbitrary, and that modular flow is state-
independent up to a unitary equivalence. We see once again that imposing a
local structure on the quantum mechanical description of the world leads to the
formation of an exotic class of algebras - Type III factors - that, independently
of any particular state, are intrinsically dynamical. As stated by Connes [11]:
‘This flow is canonical: it depends only on the algebra itself. Von Neumann
algebras, indeed, are classified by studying this canonical flow.’

4log ∆ is called the modular Hamiltonian.
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4 Time Phenomenon: An Epistemic Analysis

In this section we provide an epistemic analysis of time in terms of the
observer’s capacity in distinguishing the states corresponding to distinct
moments in a world that is unitary and local.

As we saw in the section 2, relative entropy encodes the distinguishability of
two distinct states from the perspective of an observer. Eq.(2) however, is valid
only in a non-local quantum mechanical world, and thus it is a special case that
applies to type I factors only. A more suitable expression for relative entropy
that applies to any class of von Neumann algebra was pioneered by Araki [27] :

HΨ,Φ = −〈Ψ| log ∆Ψ,Φ|Ψ〉.

Here ∆Ψ,Φ is called the relative modular operator induced by the adjoint
operation:

S : A|Ψ〉 → A∗|Φ〉 , SΨ,Φ = JΨ,Φ∆
1/2
Ψ,Φ

with A ∈ RO. HΨ,Φ can be construed as a measure of the confidence with
which the observer who is located in the region O - sensing the world through
measuring RO - can distinguish the true global state Ψ from the expected
global state Φ. An important observation here is that the relative entropy
involves the logarithm of the modular operator ∆Ψ,Φ. It is the existence of this
modular operator as a nontrivial object that makes it possible for an observer
to perceive distinctions across states. In other words, if the von Neumann alge-
bra did not admit a modular structure (∆ = I), then log ∆ = 0, and thus all
the possible distinct states of the world would have appeared indistinguishable
in the eyes of the observer, rendering the conception of dynamics impossible.
This is a manifestation of the inextricable link between the modular structure
and the intrinsic dynamism of the type III von Neumann algebra.

Furthermore, The monotonicity of relative entropy states [27] that the
distinguishability never increases as the region of access O decreases in size5:

HOΨ,Φ ≤ HÕΨ,Φ , O ⊆ Õ

That is, the larger the set of observables with witch the observer senses the
world, the better they can distinguish the global states. To obtain an intuitive
understanding of the monotonicity relation one should note that in the type
III structures, in particular the diamond algebras, due to the unavoidable
presence of entanglement in the global state, the local observer will always
see a highly mixed state with high degree of uncertainty. As the observer’s
region of access for measurements decreases, the uncertainty that is inherent

5Note that the relative entropy HΨ; Φ is a function of the local algebra RO, as the modular
operator is generated by both the global state and the local algebra.
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in the observed state increases, and obscures the distinctiveness of the global
states even further.

The most primary aspect of temporality is the perceived distinctiveness of the
world-states corresponding to separate moments in the eyes of the observer.
To see how this phenomenon can be mathematically represented in terms of
the relative entropy, we note that Hψ,φ is a temporal object in that it captures
(at the moment of observation and from the perspective of the observer) the
distinction between the state ψ that is present and yet to be measured, and the
expected state φ that simply exists as attained information or as a belief that
must have occurred to the observer through a prior measurement of some other
state ψ̃ that is absent. Therefore, the distinction between the states of the world
{ψ, ψ̃} corresponding to separate moments can be viewed as the variation in the
amount of attainable information through measuring the states {ψ, ψ̃}. That
is, the variation in the amount of attainable information quantifies the degree
of relative surprise upon measuring the state of the world at one moment with
respect to that of the previous moment. Therefore, the distinction between the
states {ψ, ψ̃} as expressed in terms of the information gain reads:

Sψ,ψ̃ ≡ supχ({ψx; px})− χ({ψ̃x; px}).

Here χ({ψx; px}) is called the Holevo bound [28], and it captures the upper
bound on the amount of attainable information upon measuring the state
ψ =

∑
x pxψx, which can be expressed [15] in terms of the relative entropy

between ψ and the measuring basis {ψx}:

χ({ψx; px}) =
∑
x

pxHψx,ψ.

The supremum is over all possible set of basis {ψx}. One can see that if the
states {ψ, ψ̃} are indistinguishable, then there will be no variation in the infor-
mation gained upon measuring the states. Alternatively, for an observer who
can not distinguish ψ from ψ̃, there will be no surprise upon measuring ψ hav-
ing already measured ψ̃, and thus the observer will not perceive any change.

Let us highlight two important aspects in regards to the interpretation of the
Holevo bound: first, χ({ψx; px}) encodes how well the observer can recover
{px} by performing measurement on the state ψ using the basis {ψx}. More
concretely, the information contained in ψ is indeed encoded in the proba-
bility distribution {px}, and thus Sψ,ψ̃ quantifies how distinct the retrieved
probability distributions appear in the course of a sequence of measurements.
Second, if the basis {ψx} are perfectly distinguishable from each other - {ψx}
are all pure and orthogonal - then the Holevo bound simply reduces to the
entropy of the state ψ. That is, the observer can know all there is to know
that is encoded in the state ψ. This is always the case in classical systems as
the measurement basis e.g., two sides of a coin, are perfectly distinguishable.
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In quantum systems however, the measuring basis can overlap, 〈ψx, ψy〉 6= 0,
which results in the decay of the observer’s accuracy in retrieving {px}, and
that consequently, leads to a partial knowledge of the state ψ. Also, as one
would expect, for a pure state the Holevo bound is simply zero as the entropy
is zero, and thus there is no information to be attained.

Now let us suppose that the observer is thrown into the world that is described
in terms of the type III algebra. At each moment of observation, the observer
senses the world from the perspective of a diamond algebras R� that is nested
inside a larger algebra, through which the next observation is made (see figure
1.) Due to the unavoidable presence of entanglement in the global state Ψ

Fig. 1 The depiction of a sequence of nested diamond algebras each representing the
observable world of a finite observer at each moment of their life.

across the diamond algebras, at each moment of observation, the observer, who
is confined to a diamond, is measuring a highly mixed state ψ� = 〈Ψ|R�|Ψ〉.
Thus, from the perspective of the observer, the distinction between the mixed
states ψ� and ψ�̃ with �̃ ⊂ � can be written as the variation in the information
that can be attained from measuring the mixed states:

S�,�̃ = supχ({ψ�x; px})− χ({ψ�̃x; px}) (5)

where the state ψ� =
∑

x pxψ
�
x, is measured in the basis states {ψ�x}. The

definition (5) is called the Connes-Størmer relative entropy [29], and it can
be construed as a measure of how distinct a global state Ψ can appear when
it is measured from the perspective of a pair of nested local algebras RO
and RÕ with Õ ⊂ O. In the field of quantum information theory, SO,Õ is
sometimes referred to as the quantum privacy [30] as it quantifies the amount
of information that is in principle hidden or invisible to the observer who is
confined to the sub-algebra RÕ.
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Due to the monotonicity of relative entropy, Hψ�̃x,ψ
�̃ < Hψ�x,ψ

� , S�,�̃ > 0. That
is, the observer’s partial knowledge increases each time that they perform a
measurement. For the observer to perceive perfect distinctiveness however,
the variation in the attained information should diverge. That is for the two
states {ψ�, ψ�̃} to appear perfectly distinguishable, the corresponding Connes-
Størmer relative entropy should be infinite. Intuitively, the variation in the
attainable information as the observer’s local algebra grows is proportional
to the relative ‘size’ of the algebras. That is, the larger the ratio of the local
algebras {RO,RÕ}, the more information to be gained through channeling

from one to the other, Õ → O, and subsequently, the larger SO,Õ. A rigorous
algebraic measure that quantifies the relative sizes of two sub-factorsRÕ ⊂ RO
is called the Jones index [31], [RO,RÕ]. The Jones index is always positive
and equals to one if and only if RO = RÕ. It turns out that for the diamond
sub-factors - the sequence of nested algebras representing the observable world
of a finite observer - the Jones index is infinite:

[R�,R�̃] =∞ , R�̃ ⊂ R�.

Therefore, the global state Ψ always appears distinct at each moment that
the observer performs a measurement.

It is of central importance to note that in our analysis, the phenomenon of
time - the epistemic distinctiveness - which emerges as a result of observing the
world from the perspective of various local algebras, appears to be insensitive
to the ontic state of the world Ψ. In other words, any global state, in a world
that is unitary and local, appears distinct each time that it is being observed
by a local observer. Furthermore, it follows that if this epistemic distinction
is independent from the ontic global state, it must as well be independent
of any ontic evolution of the global state, since any other state induces the
same phenomenon. Put differently, in a unitary and local world, the observer
experiences time whether the ontic state of the world is evolving or whether it
is invariant. Indeed, by committing to a type III structure as the ontology of
our analysis, the global state of the world remains invariant according to the
modular structure, ∆it

Ψ|Ψ〉 = |Ψ〉.

5 Epistemic Analysis of Time and Thermal
Time Hypothesis

Thermal Time Hypothesis [11], as a solution to the problem of time in generally
covariant quantum theories, is the proposition that time has a thermodynami-
cal origin. The hypothesis, based on the modular structure of the von Neumann
algebra, suggests that the unitary group of modular automorphism αΨ

t , that
is generated by both the global state Ψ and the local algebra RO, determines
the time flow experienced by the observer localised in the region O. To illus-
trate this, and more importantly, to understand from where does the term
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‘thermal’ originate let us consider the world to be in the vacuum state Ω, in
which an immortal observer is moving with the uniform acceleration a (see
figure 2.) The time flow experienced by the this observer can be computed in

Fig. 2 The graph of a uniformly accelerating observer who is restricted, as a consequence
of their uniform acceleration, to the right-side region - the Rindler wedge - of the Minkowski
space time.

terms of the unitary transform uτ = eiaτK generated by the boost operator K.
Due to their uniform acceleration, the observer is restricted to the right-side
region - the Rindler wedge - of the space time, and thus they sense the world
through the corresponding local algebra RO+ . It turns out that the modular
flow induced by the local algebra RO+ is closely related to the proper time
flow of the observer [32]:

αt[RO+ ] = u−βtRO+uβt. (6)

The significance of the Eq.(6) is that by solely analysing the modular structure
of the local algebra RO+ , one is able to deduce the proper time experienced
by an observer who is moving with a uniform acceleration. As one can see the
proper time and the modular time are related via a proportionality constant
, t = −βτ , where β = 2π/a.

In order to understand what does the experience of the uniformly accelerating
observer consist of, one should note that due to the inherent entanglement of
the type III algebra, the vacuum state appears highly mixed from the perspec-
tive of the observer localised in the region O+. In fact it can be shown [9] that
the restriction of the vacuum state to the local algebra, ω(RO+) = 〈Ω|RO+ |Ω〉,
gives rise to a maximally mixed state that is in thermal equilibrium with
respect to the proper time flow. Indeed, this is a consequence of the modular
structure of the local algebra: every local algebra induces a modular flow
with respect to which the local state - the restriction of the global state to
that local algebra - is in thermal equilibrium. Therefore, the modular flow
induced by RO+ determines the time experience of the observer localised in
O+, which consists of a perpetual exposure to a thermal state at the inverse
temperature β = 1/T . The thermal time hypothesis is a general proposition
that the proper time of the observer localised in any region of space time O,
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is determined by the local thermal state, as its modular flow.

The thermal picture of time appears to face a conceptual issue concerning
the epistemology of the observer. The perpetual perception of a thermal
state renders any epistemic access to time impossible as the situated observer
simply does not realise any distinction. The non-equilibrium phenomena that
appear to underly the conception ot time itself, do not seem to be addressed
in a picture where the primary objects are the equilibrium states. Connes
and Rovelli [11] do not see this as a conceptual issue by observing that in
the infinite dimensional quantum systems one typically measures small per-
turbations around a background thermal state. Therefore, the local observer
is not frozen in time, and instead perceives change in the state of affairs due
to small fluctuations around an equilibrium state that determines the local
proper time as its modular flow. In this view, the background thermal state
exists as a limit state that is reached asymptotically, and thus the associated
modular flow simply describes the near equilibrium behaviour [33].

An instance where the proper time for a near equilibrium phenomenon is
determined by the background thermal state, is presented in the context of
Friedman-Robertson-Walker (FRW) cosmology. It has been shown [34] that in
a FRW universe that is filled with radiation, the cosmological time - the proper
time experienced by co-moving observers - coincides with the flow determined
by the Cosmic Microwave Background (CMB) as the background thermal state
of the universe. In this analysis, the thermal time can explain the emergence
of the cosmological time experienced by the co-moving observers to whom the
universe appears isotropic. Swanson [12] notes this problem by pointing out the
that in our human scale however, the universe appears highly non-isotropic,
and thus our experienced time flow, which occurs at much smaller scales, does
not seem to be reducible to the thermal time induced by the CMB. Therefore
the conceptual challenge facing the thermal time hypothesis, is linked with
the time flow in strictly non-equilibrium phenomena that we perceive as local
observers.
The problem of time in non-equilibrium phenomena seems to be dissolved
within the epistemic analysis that we have presented in this work. To see this,
we note that at each moment of observation, the finite observer senses the
world from the perspective of a local algebra that is slightly different from
the previous moment (see figure 1.) Therefore, the observer is never restricted
to a single diamond algebra, and instead is channeling from one region �̃ to
a slightly larger region �. In this way, the experienced time of the observer is
not determined by the modular flow of some local algebra R�, through which
the observer senses the world only once in their lifetime. But instead, the time
flow of a finite observer consists of a sequential exposure to a series of distinct
local states ψ(i) = 〈Ψ|R�(i) |Ψ〉, that are each in a thermal equilibrium with

respect to their corresponding (distinct) modular flows α
(i)
t induced by the

global state Ψ and the local algebra R�(i) (see figure 3.) In other words, the
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Fig. 3 The depiction of the observer’s sequential exposure to a series of distinct states that
are each at thermal equilibrium with respect to their corresponding modular flows.

relative entropy S�̃,� , captures in the eyes of the observer, the distinction
between a sequence of thermal states ψ(i). Therefore, what appears to encode
the flow of time for an observer, must be a mathematical map that functions
as a channel across the sequence of nested local algebras.

We note that the scenario of the immortal observer who is moving with a
uniform acceleration is simply a special case of the framework presented here.
For an immortal observer, the accessible algebra, RO+ , is an infinite diamond
that can not be nested within a larger enclosing one. Alternatively, for an
immortal observer, the sub-algebra and the algebra coincide, which results in
the vanishing of the corresponding Connes-Størmer relative entropy S�∞,�∞ =
0. Therefore, the observer can not distinguish the thermal states corresponding
to separate moments, and thus they perceive no change.

6 Conclusion

In this work we have presented an epistemic analysis of time where the
distinctiveness perceived by the observer is the primary function that is rig-
orously represented by the information-theoretic concept of relative entropy.
The ontic commitment to a unitary and local world in which the observer is
situated, leads to the formation of the algebraic language of type III within
which the phenomenon of time emerges as an epistemic function that is in
principle insensitive to any particular ontic state of the world.

The analysis presented here can be further explored from a variety of per-
spectives. For instance, the properties of the algebraic map that functions as
a channel across local algebras can be further analysed from the perspective
of the modular theory. There exists a class of maps across diamond algebras
called the canonical endomorphisms [35] that are unitary maps determined
by the modular structure. Due their unitary property however, they can not
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account for the monotonicity of the relative entropy, as HΨ,Φ is invariant
under unitary transforms.

A second direction of research consists in addressing the question of how the
arrow of time emerges from our analysis. It is not clear how the epistemic
arrow of time emerges within the presented framework. That is, the arrow
of time, which can be be thought of as the tendency towards equilibrium,
entails a reduction in the observer’s capacity to distinguish the state of affairs.
This reduction however is not visible in our analysis as the relative entropy
between states at consecutive moments is infinite due to the divergence of the
Jones index.

Finally, a challenging yet intriguing attempt is to explore the possibility of
the emergence of the locality as an epistemic function. In this line of research,
the goal would be to minimise our ontic commitments by bracketing the local
structure of the world from our analysis, and examine whether spacetime itself,
as a local background, can be grounded in the perception of the observer who
is situated in a world described by a simpler ontology of type I algebra.
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